|  | 6. Confidence Intervals Based on Normal Distributions Topics and Notes 
            
    Concept of confidence interval (CI) for population mean ($\mu$) 
       a. Point estimate vs interval estimate b. The logic of confidence intervals c. Concepts of confidence interval of population mean 
          ■ Confidence level ($1- \alpha$) and critical value ($CV = Z_{\alpha/2}$)  ■ Standard error of sample mean ($\bar{x}$)  ■ Margin of error ($E = CV \times s/\sqrt{n}$)  ■ structure of CI ($\bar{x} - E, \bar{x} + E$)  Steps for constructing a confidence interval of population means
       a. Identify confidence level (default 1 - $\alpha$ = 0.95)b. Find the critical value (CV) from the normal distribution tablec. Calculate the margin of error: $E = CV s/\sqrt{n}$d. Write the CI explicitly: ($\bar{x} - E, \bar{x} + E$)e. Interpret confidence interval  Implementing confidence interval for a population mean: large sample case  Lecture Note
            Confidence Intervals: Logic and Framework HTML  
                 
                         PDF
 Practice and Interactive Apps    
               
            Practice exercises #06 
                WEB LINK  [Optional]Read section 8.1 and 8.2 of Navidi's textbook  Normal CI for Means and Proportions
                 INTERACTIVE APPS Weekly Assignments   
            
             This week's Assignment (Weekly quiz)
            
              a. Available on D2L: 12:00 PM, Thursdayb. Due: 11:30 PM, Sunday Answer Key  |  |  |