6. Confidence Intervals Based on Normal Distributions

Topics and Notes
  1. Concept of confidence interval (CI) for population mean ($\mu$)
    • a. Point estimate vs interval estimate
    • b. The logic of confidence intervals
    • c. Concepts of confidence interval of population mean
      •   ■ Confidence level ($1- \alpha$) and critical value ($CV = Z_{\alpha/2}$)
      •   ■ Standard error of sample mean ($\bar{x}$)
      •   ■ Margin of error ($E = CV \times s/\sqrt{n}$)
      •   ■ structure of CI ($\bar{x} - E, \bar{x} + E$)
  2. Steps for constructing a confidence interval of population means
    • a. Identify confidence level (default 1 - $\alpha$ = 0.95)
    • b. Find the critical value (CV) from the normal distribution table
    • c. Calculate the margin of error: $E = CV s/\sqrt{n}$
    • d. Write the CI explicitly: ($\bar{x} - E, \bar{x} + E$)
    • e. Interpret confidence interval
  3. Implementing confidence interval for a population mean: large sample case
  4. Lecture Note
Practice and Interactive Apps
  1. Practice exercises #06 WEB LINK
  2. [Optional]Read section 8.1 and 8.2 of Navidi's textbook
  3. Normal CI for Means and Proportions INTERACTIVE APPS
Weekly Assignments
  1. This week's Assignment (Weekly quiz)
    • a. Available on D2L: 12:00 PM, Thursday
    • b. Due: 11:30 PM, Sunday

Copyright © 2019- C. Peng. Last updated: