 |
6. Confidence Intervals Based on Normal Distributions
Topics and Notes
- Concept of confidence interval (CI) for population mean ($\mu$)
- a. Point estimate vs interval estimate
- b. The logic of confidence intervals
- c. Concepts of confidence interval of population mean
- ■ Confidence level ($1- \alpha$) and critical value ($CV = Z_{\alpha/2}$)
- ■ Standard error of sample mean ($\bar{x}$)
- ■ Margin of error ($E = CV \times s/\sqrt{n}$)
- ■ structure of CI ($\bar{x} - E, \bar{x} + E$)
- Steps for constructing a confidence interval of population means
- a. Identify confidence level (default 1 - $\alpha$ = 0.95)
- b. Find the critical value (CV) from the normal distribution table
- c. Calculate the margin of error: $E = CV s/\sqrt{n}$
- d. Write the CI explicitly: ($\bar{x} - E, \bar{x} + E$)
- e. Interpret confidence interval
- Implementing confidence interval for a population mean: large sample case
- Lecture Note
- Confidence Intervals: Logic and Framework
HTML
PDF
Practice and Interactive Apps
- Practice exercises #06
WEB LINK
- [Optional]Read section 8.1 and 8.2 of Navidi's textbook
- Normal CI for Means and Proportions
INTERACTIVE APPS
Weekly Assignments
- This week's Assignment (Weekly quiz)
- a. Available on D2L: 12:00 PM, Thursday
- b. Due: 11:30 PM, Sunday
|
 |
|