There are two main ways to create a plotly
object:
either by transforming a ggplot2 object into a plotly object via
ggplotly()
or by directly initializing a plotly object with
plot_ly()
/plot_geo()
/plot_mapbox()
.
Plotly has a rich and complex set of features. The most common features
are:
One can feed a ggplot
to plotly
to render
ggplot via plotly
by using ggplotly()
- a
wrapper of ggplot
. Compared to the base R plotting function
plot()
, plot_ly()
is more technical and poorly
documented. However, the following factors may make plotly
the best option:
In this note, we introduce the basic statistical graphics using the
plotly
package. plotly
graphics automatically
contain interactive elements that allow users to modify, explore, and
experience the visualized data in new ways.
The coding effort is similar to that of SAS ODS graphics. To use
plot_ly()
, we need to install (if not done) and load the
plotly
package. We use the well-known iris data set in the
following plots. A nice plotly
cheat sheet can be found at
https://pengdsci.github.io/STA553VIZ/w06/r_plotly_cheat_sheet.pdf
The grammar of plot_ly()
is similar to that of
ggplot()
. By specifying text
option, we can
customize the hover text. If text
option is not specified,
the default hover text is just the x=
and y=
coordinates of that data point, and the variables in the
color=
option and marks=
option. In addition,
we can group the data points by color and size just as in ggplot2. To
add a layer in the graph, such as fitting a linear regression line, we
use add_trace
.
First, we make a simple interactive scatter plot using sepal length and width. We can view the information about the variables and color coding information in the hover text. The labels of axes and legend titles and labels are default.
plot_ly(
data = iris,
x = ~Sepal.Length, # Horizontal axis
y = ~Sepal.Width, # Vertical axis
color = ~factor(Species), # must be a numeric factor
type = "scatter",
mode = "markers")
hovertemplate
We can also add additional information to the plot to enhance the interactivity of the plot. For example, we can
modify the point size using the value of a numerical variable variable;
add text to the hover text using text
option to show
the class label;
formulate the hover text using hovertemplate
option.
hovertemplate
plot_ly(
data = iris,
x = ~Sepal.Length, # Horizontal axis
y = ~Sepal.Width, # Vertical axis
customdata = ~Petal.Width,
color = ~factor(Species), # must be a numeric factor
hovertext = ~Species, # show the species in the hovertext
hoverlabel = ~Petal.Width,
####
marker = list(size = ~Petal.Length, sizeref = .05, sizemode = 'area'),
#
alpha = 0.9,
type = "scatter",
mode = "markers",
## using the following hovertemplate() to add the information of the
## Two numerical variables to the hover text.
hovertemplate = paste('<b>Sepal Width<b>: %{y}',
'<br><b>Sepal Length</b>: %{x}',
'<br><b>Petal Length</b>: %{marker.size:,}',
'<br><b>Petal Width</b>: %{customdata}',
'<br><b>Species</b>: %{hovertext}',
"<extra></extra>")
###
)
Titles and axis labels are important in any visualization, to include a meaningful title, informative labels, and annotations to the plotly plot, we can use layout() function. The following code only gives you some design ideas you can use to enhance your plotly charts. The detailed list of configurations can be found from the plotly’s reference page at https://plotly.com/r/reference/layout/
plot_ly(
data = iris,
x = ~Sepal.Length, # Horizontal axis
y = ~Sepal.Width, # Vertical axis
color = ~factor(Species), # must be a numeric factor
#text = ~Species,
text = ~paste("Petal Length: ", Petal.Length,
"<br>Petal Width: ", Petal.Width,
"<br>Species: ", Species),
# Show the species in the hover text
## using the following hovertemplate() to add the information of the
## Two numerical variables to the hover text.
### Use the following hover template to display more information
hovertemplate = paste('<i><b>Sepal Width<b></i>: %{y}',
'<br><b>Sepal Length</b>: %{x}',
'<br><b>%{text}</b>'),
alpha = 0.6,
marker = list(size = ~Petal.Length, sizeref = .05, sizemode = 'area' ),
type = "scatter",
mode = "markers",
## graphic size
width = 700,
height = 500
) %>%
layout(
### Title
title =list(text = "Sepal Length vs Sepal Width",
font = list(family = "Times New Roman", # HTML font family
size = 18,
color = "red")),
### legend
legend = list(title = list(text = 'species',
font = list(family = "Courier New",
size = 14,
color = "green")),
bgcolor = "ivory",
bordercolor = "navy",
groupclick = "togglegroup", # one of "toggleitem" AND "togglegroup".
orientation = "v" # Sets the orientation of the legend.
),
## margin of the plot
margin = list(
b = 100,
l = 100,
t = 100,
r = 50
),
## Background
plot_bgcolor ='#f7f7f7',
## Axes labels
xaxis = list(
title=list(text = 'Sepal Length',
font = list(family = 'Arial')),
zerolinecolor = 'red',
zerolinewidth = 2,
gridcolor = 'white'),
yaxis = list(
title=list(text = 'Sepal Width',
font = list(family = 'Arial')),
zerolinecolor = 'purple',
zerolinewidth = 2,
gridcolor = 'white'),
## annotations
annotations = list(
x = 0.7, # between 0 and 1. 0 = left, 1 = right
y = 1.5, # between 0 and 1, 0 = bottom, 1 = top
font = list(size = 12,
color = "darkred"),
text = "The point size is proportional to the sepal length",
xref = "paper", # "container" spans the entire `width` of the
# lot. "paper" refers to the width of the
# plotting area only. yref = "paper",
# same as xref.
xanchor = "center", # horizontal alignment with respect to its x position
yanchor = "bottom", # similar to xanchor
showarrow = FALSE)
)
We also write a theme just like we did in the regular ggplot. The following is an example.
myPlotlyLayout <- function(anyObjName){ # anyString is required initial argument.
# it can be any string a,b,c, .........
layout(anyObjName,
### Title
title =list(text = "Sepal Length vs Sepal Width",
font = list(family = "Times New Roman", # HTML font family
size = 18,
color = "red")),
### legend
legend = list(title = list(text = 'species',
font = list(family = "Courier New",
size = 14,
color = "green")),
bgcolor = "ivory",
bordercolor = "navy",
groupclick = "togglegroup", # one of "toggleitem" AND "togglegroup".
orientation = "v" # Sets the orientation of the legend.
),
## margin of the plot
margin = list(
b = 120,
l = 50,
t = 120,
r = 50
),
## Background
plot_bgcolor ='#f7f7f7',
## Axes labels
xaxis = list(
title=list(text = 'Sepal Length',
font = list(family = 'Arial')),
zerolinecolor = 'red',
zerolinewidth = 2,
gridcolor = 'white'),
yaxis = list(
title=list(text = 'Sepal Width',
font = list(family = 'Arial')),
zerolinecolor = 'purple',
zerolinewidth = 2,
gridcolor = 'white'),
## annotations
annotations = list(
x = 0.7, # between 0 and 1. 0 = left, 1 = right
y = 0.9, # between 0 and 1, 0 = bottom, 1 = top
font = list(size = 12,
color = "darkred"),
text = "The point size is proportional to the sepal length",
xref = "paper", # "container" spans the entire `width` of the plot.
# "paper" refers to the width of the plotting area only.
yref = "paper", # same as xref
xanchor = "center", # horizontal alignment with respect to its x position
yanchor = "bottom", # similar to xanchor
showarrow = FALSE
)
)
}
plot_ly(
data = iris,
x = ~Sepal.Length, # Horizontal axis
y = ~Sepal.Width, # Vertical axis
color = ~factor(Species), # must be a numeric factor
text = ~Species, # show the species in the hover text
## using the following hovertemplate() to add the information of the
## Two numerical variables to the hover text.
hovertemplate = paste('<i><b>Sepal Width<b></i>: %{y}',
'<br><b>Sepal Length</b>: %{x}',
'<br><b>%{text}</b>'),
alpha = 0.9,
marker = list(size = ~Petal.Length, sizeref = .05, sizemode = 'area' ),
type = "scatter",
mode = "markers",
## graphic size
width = 700,
height = 500) %>% myPlotlyLayout()
As we did in the base R and ggplot, we illustrate how to add images to plotly charts: inserting an image and setting an image background.
Inserting Images to plotly
Charts
The following example shows how to use layout function to insert an external image to a plotly scatter plot. Comparing the steps of inserting an external image to the base R and ggplot, it is relatively straightforward and flexible to perform the same task in plotly. See the comments in the code to place the image in an appropriate location.
plot_ly(
data = iris,
x = ~Sepal.Length, # Horizontal axis
y = ~Sepal.Width, # Vertical axis
customdata = ~Petal.Width,
color = ~factor(Species), # must be a numeric factor
hovertext = ~Species, # show the species in the hover text
hoverlabel = ~Petal.Width,
####
marker = list(size = ~Petal.Length, sizeref = .05, sizemode = 'area'),
#
alpha = 0.9,
type = "scatter",
mode = "markers",
## using the following hovertemplate() to add the information of the
## two numerical variable to the hover text.
hovertemplate = paste('<b>Sepal Width<b>: %{y}',
'<br><b>Sepal Length</b>: %{x}',
'<br><b>Petal Length</b>: %{marker.size:,}',
'<br><b>Petal Width</b>: %{customdata}',
'<br><b>Species</b>: %{hovertext}',
"<extra></extra>") ) %>%
layout(
images = list(
list(
source = "https://pengdsci.github.io/STA553VIZ/w06/img/iris.jpeg",
xref="paper", # without assuming having a coordinate system, we
yref="paper", # can use paper size to set up a relative location
# to place an image.
# We can also use xref="x domain", yref="y domain",
# to set up a coordinate system to place an image.
x = 0, # value between 0 and 1 - representing percentage from left
# hand side of x (0) and the right hand side of x (1).
y = 1, # x = 0, y = 1 ==> "topleft"
sizex = .2, # image size - horizontal
sizey = .2, # vertical size
xanchor="left", # image location -
yanchor="top" ,
opacity = 0.6 # adjusting image opacity
)
)
)
Setting Image Background for plotly Charts
pal <- c("#332288", "#117733", "#882255")
pal <- setNames(pal, c("virginica", "setosa", "versicolor"))
plot_ly(
data = iris,
x = ~Sepal.Length, # Horizontal axis
y = ~Sepal.Width, # Vertical axis
customdata = ~Petal.Width,
color = ~factor(Species), # must be a numeric factor
colors = pal, # custom color palette
hovertext = ~Species, # show the species in the hover text
hoverlabel = ~Petal.Width,
####
marker = list(size = ~Petal.Length, sizeref = .05, sizemode = 'area'),
#
alpha = 0.9,
type = "scatter",
mode = "markers",
## using the following hovertemplate() to add the information of the
## Two numerical variables to the hover text.
hovertemplate = paste('<b>Sepal Width<b>: %{y}',
'<br><b>Sepal Length</b>: %{x}',
'<br><b>Petal Length</b>: %{marker.size:,}',
'<br><b>Petal Width</b>: %{customdata}',
'<br><b>Species</b>: %{hovertext}',
"<extra></extra>")
) %>%
layout(
images = list(
list(
# Add images
source = "https://pengdsci.github.io/STA553VIZ/w06/img/irisbg.jpg",
xref = "x",
yref = "y",
x = 4,
y = 4.5,
sizex = 7,
sizey = 3,
sizing = "stretch",
opacity = 0.5,
layer = "below"
)
)
)
When a data set involves a time variable, we also use movement to
represent the time variable. plot_ly()
can create animated
graphs. The following is an example using the built-in
gapminder data set
in the library gapminder
that displays the relationship between life expectancy and GDP per
capita of countries over time (every 5 years).
pal.IBM <- c("#332288", "#117733", "#0072B2","#D55E00", "#882255")
pal.IBM <- setNames(pal.IBM, c("Asia", "Europe", "Africa", "Americas", "Oceania"))
df <- gapminder
fig <- df %>%
plot_ly(
x = ~gdpPercap,
y = ~lifeExp,
size = ~(2*log(pop)-11)^2,
color = ~continent,
colors = pal.IBM, # custom colors
#marker = list(size = ~(log(pop)-10), sizemode = 'area'),
frame = ~year, # the time variable to
# to display in the hover
text = ~paste("Country:", country,
"<br>Continent:", continent,
"<br>Year:", year,
"<br>LifeExp:", lifeExp,
"<br>Pop:", pop,
"<br>gdpPerCap:", gdpPercap),
hoverinfo = "text",
type = 'scatter',
mode = 'markers'
)
fig <- fig %>% layout(
xaxis = list(
type = "log"
)
)
fig
ggplotly
We can also render a ggplot using ggplotly to bring interactivity to the plot. The next is a customary theme to lay out ggplots.
myplot.theme_new <- function() {
theme(
#ggplot margins
plot.margin = margin(t = 50, # Top margin
r = 30, # Right margin
b = 30, # Bottom margin
l = 30), # Left margin
## ggplot titles
plot.title = element_text(face = "bold",
size = 12,
family = "sans",
color = "navy",
hjust = 0.5,
margin=margin(0,0,30,0)), # left(0),right(1)
# add border 1)
panel.border = element_rect(colour = NA,
fill = NA,
linetype = 2),
# color background 2)
panel.background = element_rect(fill = "#f6f6f6"),
# modify grid 3)
panel.grid.major.x = element_line(colour = 'white',
linetype = 3,
size = 0.5),
panel.grid.minor.x = element_blank(),
panel.grid.major.y = element_line(colour = 'white',
linetype = 3,
size = 0.5),
panel.grid.minor.y = element_blank(),
# modify text, axis, and color 4) and 5)
axis.text = element_text(colour = "navy",
#face = "italic",
size = 7,
#family = "Times New Roman"
),
axis.title = element_text(colour = "navy",
size = 7,
#family = "Times New Roman"
),
axis.ticks = element_line(colour = "navy"),
# legend at the bottom 6)
legend.position = "bottom",
legend.key.size = unit(0.6, 'cm'), #change legend key size
legend.key.height = unit(0.6, 'cm'), #change legend key height
legend.key.width = unit(0.6, 'cm'), #change legend key width
#legend.title = element_text(size=8), #change legend title font size
legend.title=element_blank(), # remove all legend titles
legend.key = element_rect(fill = "white"),
#####
legend.text = element_text(size=8)) #change legend text font size
}
The following plot uses the above theme and passes the correlation coefficient to the annotated text.
p <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
#aes(color = factor(Species)) +
aes(label = Species, label1 = Petal.Length, label2 = Petal.Width) +
## The labels in the above aes() will be part of the hover text.
geom_point(size = iris$Petal.Length, alpha = 0.7) +
stat_smooth(method = lm, se=FALSE, size = 0.5) + # add a linear regression line
#scale_color_manual(values=c("dodgerblue4", "darkolivegreen4", "darkred")) +
labs(
x = "Sepal Length",
y = "Sepal Width",
title = "Association between Sepal Length and Width") +
myplot.theme_new() +
annotate(geom="text" ,
x=6.8,
y=2,
label=paste("The Pearson correlation coefficient r = ",
round(cor(iris$Sepal.Length, iris$Sepal.Width),3)),
size = 2,
color = "navy") +
coord_fixed(1) ## This changes the aspect ratio of the graph
ggplotly(p)
p <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
# aes(color = factor(Species)) +
# to add more information about the variables in the data set
# use labels to denote the variable names inside the function aes()
aes(label=Species, label2=Petal.Length, label3=Petal.Width) +
geom_point(size = iris$Petal.Width, alpha = 0.7) +
stat_smooth(method = lm, se=FALSE, size = 0.3) +
#scale_color_manual(values=c("dodgerblue4", "darkolivegreen4", "darkred")) +
labs(
x = "Sepal Length",
y = "Sepal Width",
title = "Association between Sepal Length and Width") +
myplot.theme_new() +
annotate(geom="text" ,
x=6.8,
y=2,
label=paste("The Pearson correlation coefficient r = ",
round(cor(iris$Sepal.Length, iris$Sepal.Width),3)),
size = 2,
color = "navy") +
coord_fixed(1) ## This changes the aspect ratio of the graph
ggplotly(p)
Remark: It turns that ggplotly
cannot
display colors due to its recent updates. Hope that this issue will be
fixed soon.
We will create a summarized data set to make bar plots. We define a
data set to store the mean of sepal length and sepal width by species
using the dyplr
and tidyr
approaches.
barplotdata = aggregate(iris[,1:4], by = list(iris$Species), FUN = mean)
kable(head(barplotdata))
Group.1 | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
---|---|---|---|---|
setosa | 5.006 | 3.428 | 1.462 | 0.246 |
versicolor | 5.936 | 2.770 | 4.260 | 1.326 |
virginica | 6.588 | 2.974 | 5.552 | 2.026 |
Next, we draw a group bar chart.
plot_ly(
data = barplotdata,
x = ~Group.1,
y = ~Sepal.Length,
type = "bar",
name = "sepal.length.avg",
## graphic size
width = 700,
height = 400) %>%
add_trace(y=~Sepal.Width, name = "sepal.width.avg") %>%
add_trace(y=~Petal.Length, name = "petal.length.avg") %>%
add_trace(y=~Petal.Width, name = "petal.width.avg") %>%
layout( yaxis = list(title ="Mean"),
xaxis = list(title = "Species"),
title = "Group Means of Iris attributes",
## margin of the plot
margin = list(
b = 50,
l = 100,
t = 120,
r = 50
))
We first define a subset from the iris data by filtering out observations with a sepal length of less than 5. The pie chart will be created to see the distribution of species in the subset of the iris data. Keep in mind that the pie chart is constructed based on a frequency table.
# define a working data set
subiris <- iris[iris$Sepal.Length > 5,5]
## Create a frequency table in the form of the data frame.
piedata = data.frame(cate =as.vector(unique(subiris)),
freq = as.vector(table(subiris)))
# define a color vector
colors <- c('rgb(211,94,96)', 'rgb(128,133,133)', 'rgb(144,103,167)')
# make a pie chart
plot_ly(piedata,
labels = ~cate,
values = ~freq,
type = 'pie',
textposition = 'inside',
textinfo = 'label + percent',
insidetextfont = list(color = '#FFFFFF'),
#hoverinfo = 'text',
marker = list(colors = colors,
line = list(color = '#FFFFFF', width = 1)),
#The 'pull' attribute can also be used to create space between the sectors
showlegend = TRUE) %>%
layout(title = 'Distribution of Species',
xaxis = list(showgrid = FALSE, zeroline = FALSE,
showticklabels = FALSE),
yaxis = list(showgrid = FALSE, zeroline = FALSE,
showticklabels = FALSE),
## margin of the plot
margin = list(
b = 50,
l = 100,
t = 120,
r = 50
))
Histograms and density curves are used to display the distribution of numerical random variables. When comparing the distributions of different random variables, we can overlay the histograms or density curves.
We can overlay histograms to compare the distributions of multiple random variables.
plot_ly(
data = iris,
x = ~ Sepal.Length,
type = "histogram",
nbinsx = 10,
name = "sepal.length",
alpha = .5,
marker = list(line = list(color = "darkgray", width = 2)) ) %>%
## Adding additional histograms and stacking them
add_histogram(x = ~Sepal.Width,
name = "sepal.width", nbinsx = 10, alpha = 0.5,
marker = list(line = list(color = "darkgray", width = 2))) %>%
add_histogram(x = ~Petal.Length,
name = "petal.length",nbinsx = 10, alpha = 0.5,
marker = list(line = list(color = "darkgray", width = 2))) %>%
add_histogram(x = ~Petal.Width,
name = "petal.width",nbinsx = 10, alpha = 0.5,
marker = list(line = list(color = "darkgray", width = 2))) %>%
layout(barmode = "overlay",
title = "Histogram of Iris Attribute",
xaxis = list(title = "Iris Attributes",
zeroline = TRUE),
yaxis = list(title = "Count",
zeroline =TRUE),
## margin of the plot
margin = list(
b = 50,
l = 100,
t = 120,
r = 50
))
The issue is that the above overlaid histograms cannot be easy to distinguish when comparing more than two distributions in general. The ridgeline histogram can help in general. The following is an example of ridgeline histograms.
ggplot(iris, aes(x = Sepal.Length, y = Species, group = Species, fill = Species)) +
geom_density_ridges(stat = "binline", bins = 20, scale = 2.2) +
scale_y_discrete(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
coord_cartesian(clip = "off") +
theme_ridges()
It is relatively easy to use density curves to compare multiple distributions. Assume that we want to compare the distribution of the sepal length of the tree iris flowers. One way to do this comparison is to plot the three estimated density curves.
# define three densities
sepal.len.setosa <- iris[which(iris$Species == "setosa"),]
setosa <- density(sepal.len.setosa$Sepal.Length)
sepal.len.versicolor <- iris[which(iris$Species == "versicolor"),]
versicolor <- density(sepal.len.versicolor$Sepal.Length)
sepal.len.virginica <- iris[which(iris$Species == "virginica"),]
virginica <- density(sepal.len.virginica$Sepal.Length)
# plot density curves
fig <- plot_ly(x = ~virginica$x,
y = ~virginica$y,
type = 'scatter', #A character string specifying the trace type
mode = 'lines',
name = 'virginica',
fill = 'tozeroy') %>%
# adding more density curves
add_trace(x = ~versicolor$x,
y = ~versicolor$y,
name = 'versicolor',
fill = 'tozeroy') %>%
add_trace(x = ~setosa$x,
y = ~setosa$y,
name = 'setosa',
fill = 'tozeroy') %>%
layout(xaxis = list(title = 'Sepal Length'),
yaxis = list(title = 'Density'))
fig
The above overlaid density plots (with a certain level of transparency) are relatively easy to visualize.
ridgeDensity <- ggplot(iris, aes(x = Sepal.Length, y = Species)) +
geom_density_ridges() +
geom_density_interactive(aes(tooltip = interaction(Sepal.Length, Species),
data_id = interaction(Sepal.Length, Species)),
size = 1, hover_nearest = TRUE)
ridgeDensity
# girafe(ggobj = ridgeDensity)
Note: ridgeline
plots do not work well
with ggplotly
to bring interactivity to the plots. There
are some workarounds, but none is good enough for professional
presentation.
Drawing a boxplot is straightforward in plotly
.
plot_ly(
data = iris,
y = ~ Sepal.Length,
x = ~Species,
type = "box",
color = ~Species,
boxpoints = "all",
boxmean = TRUE,
showlegend = FALSE ) %>%
layout(title = "Histogram of Iris Attribute",
xaxis = list(title = "Species",
zeroline = TRUE),
yaxis = list(title = "Sepal Length",
zeroline =TRUE))
The non-interactive ggplot boxplot is given by
summarized.iris = iris %>% select(-Species) %>%
pivot_longer(everything())
g.iris = ggplot(summarized.iris, aes(x=name,y=value, fill=name)) +
geom_boxplot() +
labs(
x = "Measure Types",
y = "Numerical Measures",
title = "Association between Sepal Length and Width") +
myplot.theme_new()
###
g.iris
ggplotly
adds interactivity to the plot, but cannot add
colors in the moment.
summarized.iris = iris %>% select(-Species) %>%
pivot_longer(everything())
g.iris = ggplot(summarized.iris, aes(x = name, y = value)) +
geom_boxplot() +
labs(
x = "Measure Types",
y = "Numerical Measures",
title = "Association between Sepal Length and Width") +
myplot.theme_new()
###
ggplotly(g.iris)
Visualizing time series seems to be relatively easier since the objective is to inspect the pattern such as trend, seasonality, special shits, etc. to assist in model identification, such as determining the best length of the history of your time series data for time series forecasting, types of exponential smoothing, order of differencing, MA and AR in ARIMA framework, etc.
stock <- read.csv('https://raw.githubusercontent.com/pengdsci/sta553.html/main/data/finance-charts-apple.csv')
##
fig <- plot_ly(stock, type = 'scatter', mode = 'lines') %>%
add_trace(x = ~Date, y = ~AAPL.High) %>%
layout(showlegend = F,
title='Time Series with Rangeslider',
xaxis = list(rangeslider = list(visible = T))) %>%
layout(xaxis = list(zerolinecolor = 'blue',
zerolinewidth = 2,
gridcolor = '#ffffff'),
yaxis = list(zerolinecolor = '#ffffff',
zerolinewidth = 2,
gridcolor = '#fff'),
plot_bgcolor='#e5ecf6', width = 800, height = 400)
fig
There are also other libraries one can use to produce interactive serial plots.
# This plot uses the plot function: hccharh() and hcaes() in the library `hicharter`
hc <-stock %>%
hchart(
"line",
hcaes(x = Date, y = AAPL.High)
)
hc
The following interactive serial plot also included forecasted values and the forcasting confidence band.
appl.high = stock$AAPL.High
# n= length(appl.high)
# plot(1:n, appl.high, type = 'l')
x <- forecast(ets(appl.high), h = 48)
hc <- hchart(x)
hc
Several map libraries are available in R. In this example, we use the
plot_geo()
function from plotly
to plot on a
map.
## preparing data
poc <- read_csv("https://raw.githubusercontent.com/pengdsci/sta553.html/main/data/POC.csv")[,c(7,8,9, 17)]
poc.site <- poc[poc$POC == 1,]
# geo styling
geostyle <- list(scope = 'usa',
projection = list(type = 'albers usa'),
showland = TRUE,
landcolor = toRGB("lightblue"),
subunitcolor = toRGB("purple"),
countrycolor = toRGB("navy"),
countrywidth = 0.75,
subunitwidth = 0.5
)
## plotting map
fig <- plot_geo(poc.site, lat = ~ycoord, lon = ~xcoord) %>%
add_markers(text = ~ SITE_DESCRIPTION,
color = "red",
symbol = "circle",
size = I(10),
hoverinfo = "text" ) %>%
layout( title = 'POC Risk Sites', geo = geostyle)
fig
This note focuses on using plotly
library and its
dependencies to create various interactive plots. However,
plotly
is only one such library that can produce
interactive graphics. There are several other commonly used libraries
with different strengths. Here are a few of them
Data integration. Collect raw data and turn it into clean, analytics-ready information by performing data replication, ingestion, and transformation. Then store it in a data lake or data warehouse.
Goal definition. Define the business objective you’re trying to achieve and the data insights you seek. For example, are you trying to optimize a production process or track the ROI of your marketing efforts?
Visualization design. Design begins with selecting KPIs and types of graphs, charts, and maps that best tell your story. Keeping your visualizations clean and simple will help users understand and work with the data.
Collaboration and sharing. Allow all approved users to explore the data freely to uncover their own insights. Your software should allow users to embed your visualizations in other applications and to engage with them on their mobile devices.