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ABSTRACT
In this paper, we propose new semiparametric and Bootstrap tests based on the
ratio of two variances under a density ratio model and compare them with existing
tests for testing the equality of two variances from two independent populations. We
showed that the ratio of two independent variances follows an asymptotic log-normal
distribution. Also presented in this paper are large sample asymptotic results of the
semiparametric estimator of the ratio of the two sample variances. We also present
a theoretical comparison of our semiparametric test on the ratio of two variances
with the existing non-parametric test using Pitman’s relative efficiency. Numerical
comparisons of the performance of various tests are performed via simulation studies.
We also use two numerical examples to illustrate the implementation of new tests.

KEYWORDS
Density ratio; empirical likelihood; variance ratio; Bootstrap test; goodness-of-fit;
power analysis

1. Introduction

Testing homogeneity of populations has practical importance in real-world applications
in that the variance measures the quality of products or performance of various pro-
cesses in business, manufacturing industry, environmental science, healthcare services,
etc. In statistics, some inferential procedures are heavily relying on the assumption of
equal variances. If two independent populations are normally distributed with equal
variances, the ratio of the two sample variances has an F distribution with certain
degrees of freedom. Siegel and Tukey (1960) and Markowski and Markowski (1990)
showed that the F test is extremely sensitive to the assumption of normal distribution.

For testing equality of variances from non-normal populations, there are also dif-
ferent tests available in the literature. The robust homogeneity tests of variances of
multiple populations fall into two major categories: ANOVA-based F tests such as
Levene (1960), Brown and Forsythe (1974), and many recent developments and modi-
fications; and resampling based testing procedures such as those proposed by Boos and
Brownie (1989), Lim and Loh (1996), Wludyka and Sa (2004), Charway and Bailer
(2007), Parra-Frutos (2009) and Cahoy (2010), etc.

Due to its simplicity, robustness, and ease of implementation, Levene’s test has been
continuously cited, studied, and applied in a wide array of fields by researchers and
practitioners since it was published. On the other hand, the ANOVA type F tests
are approximately F distributed. Any serious violation of normality, homoscedasticity,
and independence can significantly downgrade the performance of the test. Many re-
searchers discussed the influence of various violations to the classical assumptions on
tests for equal variances (See the recent work of Parra-Frutos, 2013, pages 1270-1271,
for more information). Extensive applications of Levene’s test and various modifica-
tions are summarized in Gastwirth et. al. (2009).

All ANOVA-based and Bootstrap homogeneous variance testing procedures can
be naturally used for testing the equality of two independent population variances.
Wan et al (2016) studied the difference of two population means and variances using
a semiparametric density ratio model of Qin (1998) jointly with a semiparametric
goodness-of-fit test (Qin and Zhang, 1997) and gave some asymptotic results on the
testing procedures. In this paper, we use the same density ratio model as used in
Wan et al (2016) to propose a homogeneous variance test based on the ratio of the
two variances, an alternative to the well-known F ratio statistic. We showed that the
variance ratio test statistic follows an asymptotic log-normal distribution under some
conditions of the underlying density ratio model. We also propose a semiparametric
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Bootstrap confidence interval-based test for the equality of two population variances
that is suggested in Hall and Wilson (1991).

The rest of the paper is organized as follows. In Section 2, we outline the density ratio
model and empirical likelihood-based semi-parametric estimation of the probability
mass function. The sample variance will be defined as the weighted average of squared
deviations from the semi-parametric mean. The asymptotic results of the proposed
semi-parametric and non-parametric variance ratio test procedures will be presented in
Sections 3 and 4 respectively. A theoretical comparison of the proposed semiparametric
test and nonparametric variance ratio via Pitman’s relative efficiency 5. The Bootstrap
testing procedure will be given in Section 6. In Section 7, we present simulation studies
on the power of the proposed tests and the existing tests including the one proposed by
Wan et al (2016). Two numerical examples will be given in Section 8 and conclusions
and recommendations will be given in Section 9.

2. Semiparametric Estimation of Variances

We consider the following two-sample density ratio model

x1, x2, · · · , xn0
∼ g0(x),

y1, y2, · · · , yn1
∼ g1(x) = exp[α+ βτr(x)]g0(x)

(1)

where (α, βτ ) is the vector of the regression coefficients, {xi}n0

i=1 and {yj}n1

j=1 are inde-

pendent samples taken from g0(x) and g1(x), respectively. Assume G0(x) and G1(x)
are the cumulative distribution of g0(x) and g1(x). The parameters in model (1) can
be estimated from the two random samples.

There are different methods to estimate model parameters: probabilistic methods
as discussed in Qin (1998), Bickel et al (2007), and Cheng and Chu (2004); and al-
gorithmic methods as reviewed by Sugiyama et al (2010)). In this paper, we use the
empirical likelihood-based probabilistic method proposed in Qin (1998) to estimate α,
βτ and probability distributions of g0(x) and g1(x).

To this end, we write {T1, T2, · · · , Tn} = {x1, x2, · · · , xn0
, y1, y2, · · · , yn1

}. The ran-
dom weight of observation Ti is defined to be pi = dG0(Ti) for i = 1, 2, · · · , n. These
weights are considered as parameters of g0(x) and g1(x). The semiparametric likelihood
function is given by

L(α, β,G0) =

n0∏
i=1

dG0(xi)

n1∏
j=1

exp[α+ βτr(yj)]dG0(yj)

=

n∏
i=1

pi

n1∏
j=1

exp[α+ βτr(yj)]

(2)

subject to constraints

n∑
i=1

pi = 1, pi ≥ 0,

n∑
i=1

pi{exp[α+ βτr(Ti)]} = 1.

As shown in (Qin, 1998), for the fixed α and βτ , the semiparametric estimator of
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pi is given by

p̂i =
1

n0

1

1 + ρ exp[α+ βτr(Ti)]
. (3)

We substitute pi with p̂i in (2) and obtain the following profile empirical likelihood
function of α and βτ as follows

l(α, β) =

n1∑
j=1

[α+ βτr(yj)]−
n∑

i=1

log{1 + ρ exp[α+ βτr(Ti)]} − n log n0. (4)

where ρ = n1/n0. The maximum empirical likelihood estimate of α and βτ , denoted
by α̃ and β̃τ is the solution to the following system of score equations

∂l(α, β)

∂α
= n1 −

n∑
i=1

ρ exp[α+ βτr(Ti)]

1 + ρ exp[α+ βτr(Ti)]
= 0,

∂l(α, β)

∂β
=

n1∑
j=1

r(yj)−
n∑

i=1

ρ exp[α+ βτr(Ti)]

1 + ρ exp[α+ βτr(Ti)]
r(Ti) = 0.

(5)

We substitute the semiparametric regression coefficients with α̃ and β̃τ and obtain
the semiparametric estimator of the cell probability under G0(t) as follows

p̃i =
1

n0

1

1 + ρ exp[α̃+ β̃τr(Ti)]
. (6)

The cell weights under G1(t) is given by

q̃i =
1

n0

exp[α̃+ β̃τr(Ti)]

1 + ρ exp[α̃+ β̃τr(Ti)]
. (7)

2.1. Semiparametric Empirical Likelihood Estimate of Variances of G0(t)
and G1(t)

Using α̃ and β̃ obtained from (5), the semiparametric empirical likelihood estimators
of G0(t) and G1(t), denoted by G̃0(t) and G̃1(t), are given respectively by

G̃0(t) =

n∑
i=1

p̃iI[Ti ≤ t] =
1

n0

n∑
i=1

I[Ti ≤ t]

1 + ρ exp[α̃+ β̃τr(Ti)]
,

G̃1(t) =

n∑
i=1

q̃iI[Ti ≤ t] =
1

n0

n∑
i=1

exp[α̃+ β̃τr(Ti)]I[Ti ≤ t]

1 + ρ exp[α̃+ β̃τr(Ti)]
.

(8)

where I[·] is the indicator function. Denote w̃(x) = exp[α̃ + β̃τr(x)], that is, w̃i =
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exp[α̃+β̃τr(Ti)]. with these notations, we write p̃i = dG̃0(Ti) and q̃i = p̃iw̃i = dG̃1(Ti).
We then write the semiparametric estimator of the two population variances as follows

µ̃0 =

n∑
i=1

p̃iTi, µ̃1 =

n∑
i=1

q̃iTi,

σ̃2
0 =

n∑
i=1

p̃iT
2
i −

(
n∑

i=1

p̃iTi

)2

,

σ̃2
1 =

n∑
i=1

q̃iT
2
i −

(
n∑

i=1

q̃iTi

)2

.

(9)

Remark: We can see from (8) that the ratio of sample sizes ρ = n1/n0 impacts the
estimate of G0(t) and G1(t), hence, σ̃

2
0 and σ̃2

1. We will make some suggestions on the
sampling plans for obtaining better estimates of the variance in later sections.

2.2. Nonparametric Estimate of the Variance of G0(t) and G1(t)

In contrast to the semiparametric empirical likelihood estimator of G0(t) and G1(t),
the standard nonparametric empirical distributions are given by

Ĝ0 =
1

n0

n0∑
i=1

I[xi ≤ t] and Ĝ1 =
1

n1

n1∑
j=1

I[yj ≤ t] (10)

respectively. The corresponding estimator of the population variances of the two in-
dependent populations are given by

σ̂2
0 =

1

n0

n0∑
i=1

(xi − x̄)2 and σ̂2
1 =

1

n1

n1∑
j=1

(yj − ȳ)2. (11)

The test statistic for equality of two variances and the related asymptotic results will
be discussed in the next section.

3. Semiparametric Variance Ratio and Asymptotic Results

Wan et al (2016) use the difference between the two estimators of variances to test the
equality of the two population variances. In this paper, we test the equality of the two
population variances using the ratio of the two variances. This method is considered
as a semiparametric extension of the well-known F test on the ratio of two variances
from normal populations.

3.1. Notations

We will use the same notations that are used in Wan et al (2016) to present some
asymptotic results in the following. Let (α0, β0) be the true value of (α, β) in the
density ratio model (1) and denote w(x) = exp[α0 + βτ

0 r(x)]. We also assume that
limn→∞ n1/n0 = limn→∞ ρ(n) exists. For k = 1, 2, 3. Using indicator function I[·],
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we denote I0(k) = I[k > 0], I1(k) = I[k = 1], and I2(k) = I[k = 2]. The following
notations will be used to discuss the asymptotic properties of both non-parametric
and semiparametric tests for equal variances.

Ak =

∫ ∞

−∞

w(y)

1 + ρw(y)
[r(y)]I0(k)[rτ (y)]I2(k)dG0(y),

Ck =

∫ ∞

−∞

w(y)

1 + ρw(y)
(y − µ0)

2[1+I2(k)][r(y)]I1(k)dG0(y),

C ′
k =

∫ ∞

−∞

w(y)

1 + ρw(y)
(y − µ1)

2[1+I2(k)][r(y)]I1(k)dG0(y),

C ′′
2 =

∫ ∞

−∞

w(y)

1 + ρw(y)
(y − µ0)

2(y − µ1)
2dG0(y).

(12)

The corresponding point estimators are given in the following.

Ãk =

n∑
i=1

w̃(Ti)

1 + ρw̃(Ti)
[r(Ti)]

I0(k)[rτ (Ti)]
I2(k)p̃i,

C̃k =

n∑
i=1

w̃(Ti)

1 + ρw̃(Ti)
(Ti − µ̃0)

2[1+I2(k)][r(Ti)]
I1(k)p̃i,

C̃ ′
k =

n∑
i=1

w̃(Ti)

1 + ρw̃(Ti)
(Ti − µ̃1)

2[1+I2(k)][r(Ti)]
I1(k)p̃i,

C̃ ′′
2 =

n∑
i=1

w̃(Ti)

1 + ρw̃(Ti)
(Ti − µ̃0)

2(Ti − µ̃1)
2p̃i.

(13)

The semiparametric estimators µ̃0 and µ̃1 are given in (9). Furthermore, we denote

A =

(
A0 Aτ

1

A1 A2

)
, S =

ρ

1 + ρ
A and Ã =

(
Ã0 Ãτ

1

Ã1 Ã2

)
. (14)

3.2. Some Asymptotic Results

We now present several theorems to establish the asymptotic results of the semipara-
metric estimator of the variance ratio. The first theorem concerns the asymptotic
distribution of the semiparametric estimators of the two population variances under
model (1).

Theorem 3.1. If A−1 exists, under model (1), we have the following asymptotic re-
sults

√
n

(
σ̃2
0 − σ2

0

σ̃2
1 − σ2

1

)
d−−→ N

(
0,Σsemi

)
(15)
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where

Σsemi =

(
Σs
00 Σs

01

Σs
10 Σs

11

)
and

Σs
00 =(1 + ρ)

{∫ ∞

−∞
(u− µ0)

4dG0(u)−
[∫ ∞

−∞
(u− µ0)

2dG0(u)

]2}

− ρ(1 + ρ)

{
C2 − (C0, C

τ
1 )A

−1

(
C0

C1

)}
.

Σs
11 =

1 + ρ

ρ

{∫ ∞

−∞
(u− µ1)

4dG1(u)−
[∫ ∞

−∞
(u− µ1)

2dG1(u)

]2}

− 1 + ρ

ρ

{
C ′
2 − (C ′

0, C
′τ
1 )A−1

(
C ′
0

C ′
1

)}
.

Σs
01 =[Σs

10]
τ = (1 + ρ)

{
C ′′
2 − (C0, C

τ
1 )A

−1

(
C ′
0

C ′
1

)}
.

(16)

Proof. The proof of the above theorem is straightforward. See the proof of Theorem
3.1 in Wan et al (2016) for derivations of the major components in the proof.

Next, we present the asymptotic result of the semiparametric estimator of the ratio
of the two sample variances.

Theorem 3.2. Let U = (1/σ2
0,−1/σ2

1)
τ and σ2

0 and σ2
1 be the true values of the two

population variances. Under the same condition of Theorem 3.1, we have

√
n
[
log
(
σ̃2
0/σ̃

2
1

)
− log

(
σ2
0/σ

2
1

)] d−−→ N (0,Ωsemi) (17)

where Ωsemi = U τΣsemiU . Σsemi is explicitly specified in Theorem 3.1.

Proof. We perform the first-order Taylor expansion on log(σ̃2
0/σ̃

2
1) at (σ2

0, σ
2
1) and

obtain

log(σ̃2
0/σ̃

2
1) = log(σ2

0/σ
2
1) +

1

σ2
0

(σ̃2
0 − σ2

0)−
1

σ2
1

(σ̃2
1 − σ2

1) + op(∆)

= log(σ2
0/σ

2
1) +

(
1

σ2
0

,− 1

σ2
1

)(
σ̃2
0 − σ2

0

σ̃2
1 − σ2

1

)
+ op(∆)

= log(σ2
0/σ

2
1) + U τ

(
σ̃2
0 − σ2

0

σ̃2
1 − σ2

1

)
+ op(∆),

where ∆ = ||σ̃2
0 − σ2

0||+ ||σ̃2
1 − σ2

1||. Therefore,

√
n
[
log
(
σ̃2
0/σ̃

2
1

)
− log

(
σ2
0/σ

2
1

)]
= U τ√n

(
σ̃2
0 − σ2

0

σ̃2
1 − σ2

1

)
+ op(∆)

The Theorem is completed after applying Theorem 3.1 to the above expression.

7



Corollary 3.3. As a result of Theorem 3.2, σ̃2
0/σ̃

2
1 has a log-normal distribution. To

be more specific, we have the following alternative asymptotic distribution of semipara-
metric estimator of the ratio of two variances.

σ̃2
0/σ̃

2
1

d−−→ LN
[
log
(
σ2
0/σ

2
1

)
,Ωsemi/n

]
(18)

Both Theorem 3.2 and Corollary 3.3 can be used to define the test statistic for testing
the following general hypothesis, for r0 > 0,

H0 : σ
2
0/σ

2
1 = r0 versus Ha : σ2

0/σ
2
1 ̸= r0. (19)

The test statistic based on Theorem 3.1 is defined as

TS1 =

√
n
[
log(σ̃2

0/σ̃
2
1)− log r0

]√
Ω̃semi

. (20)

Under the null hypothesis σ2
0/σ

2
1 = r0, TS1

d−−→ N(0, 1). Note that Ω̃semi is a consis-
tent estimator of Ω that is explicitly given by

Ω̃semi = Ũ τ Σ̃semiŨ (21)

where Ũ = (1/σ̃2
0,−1/σ̃2

1)
τ , Σ̃semi =

(
Σ̃s
00 Σ̃s

01

Σ̃s
10 Σ̃s

11

)
. The semiparametric estimators of

the cell elements are given by

Σ̃s
00 =(1 + ρ)


n∑

i=1

(Ti − µ̃0)
4p̃i −

[
n∑

i=1

(Ti − µ̃0)
2p̃i

]2
− ρ(1 + ρ)

{
C̃2 − (C̃0, C̃

τ
1 )A

−1

(
C̃0

C̃1

)}
.

Σ̃s
11 =

1 + ρ

ρ


n∑

i=1

(Ti − µ̃1)
4q̃i −

[
n∑

i=1

(Ti − µ̃1)
2q̃i

]2
− 1 + ρ

ρ

{
C̃ ′
2 − (C̃ ′

0, C̃
′τ
1 )Ã−1

(
C̃ ′
0

C̃ ′
1

)}
.

Σ̃s
01 =[Σs

10]
τ = (1 + ρ)

{
C̃ ′′
2 − (C̃0, C̃

τ
1 )Ã

−1

(
C̃ ′
0

C̃ ′
1

)}
.

(22)

Testing the hypothesis that two independent population variances are equal is equiv-
alent to r0 = 1 in hypothesis (19) and the test statistic (20).

4. Nonparametric Variance Ratio and Asymptotic Results

We consider the estimators of the population variances based on the two independent
samples defined in (11). The following lemma is needed to study the asymptotic results
of the non-parametric variance ratio.
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Lemma 4.1. Let {x1, x2, · · · , xn} be a simple random sample taken from a population
with cumulative distribution G(x) and x̄ be the sample mean. The sample variance σ̂2

satisfies

√
n(σ̂2 − σ2)

d−−→ N (0,Θ), (23)

where the variance of
√
nσ̂2 is given by

Θ =

∫ ∞

−∞
(x− µ)4dG(x)−

[∫ ∞

−∞
(x− µ)2dG(x)

]2
.

and µ is the population mean.

Proof. Let µ and σ2 be the mean and variance of the population. Let x̄ and σ̂2 be
the estimators of the true mean and variance of the population. Note that

nσ̂2 =

n∑
i=1

(xi − µ)2 − n(x̄− µ)2.

We write

√
n(σ̂2 − σ2) =

1√
n

n∑
i=1

(xi − µ)2 −
√
nσ2 −

√
n(x̄− µ)2

=
√
n

[
1

n

n∑
i=1

(xi − µ)2 − σ2

]
−
√
n(x̄− µ)2. (24)

We next point out the following fact about the terms in (24).

√
n(x̄− µ)2

p−−→ 0.

Note also that

EG(Xi − µ)2 = σ2 and var
[
(Xi − µ)2

]
= EG(Xi − µ)4 − [EG(Xi − µ)2]2 = µ4 − σ4,

where µ4 is the 4th central moments of X and σ4 is the square of the variance of X.
By the Central Limit Theorem,

√
n

[
1

n

n∑
i=1

(Xi − µ)2 − σ2

]
d−−→ N (0, µ4 − σ4).

This implies that

√
n(σ̂2 − σ2)

d−−→ N (0, µ4 − σ4).

The proof is completed.
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Now we consider the two independent samples that satisfy model (1). Let x̄ and
σ̂2
0 be the sample mean and the sample variance of {x1, x2. · · · , xn0

} taken from the
population with distribution function G0(x). ȳ and σ̂2

1 be the sample mean and the
sample variance of {y1, y2. · · · , yn1

} taken from the population with distribution func-
tion G1(y). Assume that the two samples are independent, then we have the following
asymptotic distribution.

Theorem 4.2. Let n0 and n1 be the sizes of the two samples specified in model (1) and
n = n0+n1. Let σ̂

2
0 and σ̂2

1 be the nonparametric estimators of σ2
0 and σ2

1 respectively.
Assume ρ = n1/n0 approaches a finite number as n → ∞. We have

√
n

(
σ̂2
0 − σ2

0

σ̂2
1 − σ2

1

)
d−−→ N (0,Σnon) , (25)

where

Σnon =

(
Σn
00 0
0 Σn

11

)
and

Σn
00 = (1 + ρ)

{∫ ∞

−∞
(u− µ0)

4dG0(u)−
[∫ ∞

−∞
(u− µ0)

2dG0(u)

]2}
,

Σn
11 =

1 + ρ

ρ

{∫ ∞

−∞
(u− µ1)

4dG1(u)−
[∫ ∞

−∞
(u− µ1)

2dG1(u)

]2}
.

Proof. The proof is straightforward after using the result of the above Lemma

4.1. Let n = n0 + n1. Since σ̂2
0 − σ2

0
d−−→ N

[
0, 1

n0
(µ0

4 − σ4
0)
]

and σ̂2
1 −

σ2
1

d−−→ N
[
0, 1

n1
(µ1

4 − σ4
1)
]
, we have

√
n
(
σ̂2
0 − σ2

0

) d−−→ N
[
0, (1 + ρ)(µ0

4 − σ4
0)
]
and

√
n
(
σ̂2
1 − σ2

1

) d−−→ N
[
0, 1+ρ

ρ (µ1
4 − σ4

1)
]
. Note that σ̂2

0 and σ̂2
1 are independent. The re-

sult of the Theorem follows immediately after we rewrite the aforementioned univariate
asymptotic normal distributions into the form of a bivariate normal distribution.

The following Theorem concerns the asymptotic distribution of the ratio of the two
sample variances

Theorem 4.3. Let U = (1/σ2
0,−1/σ2

1)
τ . Under the condition of Theorem 4.2, we

have

√
n
[
log
(
σ̂2
0/σ̂

2
1

)
− log

(
σ2
0/σ

2
1

)] d−−→ N (0,Ωnon) , (26)

where Ωnon = U τΣnonU . Σnon is explicitly specified in Theorem 4.2.

Proof. We use Taylor expansion to expand log(σ̂2
0/σ̂

2
1) at (σ

2
0, σ

2
1) and obtain

log(σ̂2
0/σ̂

2
1) = log(σ2

0/σ
2
1) +

1

σ2
0

(σ̂2
0 − σ2

0)−
1

σ2
1

(σ̂2
1 − σ2

1) + op(∆).

10



where ∆ = ||σ̂2
0 − σ2

0||+ ||σ̂2
1 − σ2

1||. Therefore

√
n
[
log(σ̂2

0/σ̂
2
1)− log(σ2

0/σ
2
1)
]
=

(
1

σ2
0

,− 1

σ2
1

)√
n

(
σ̂2
0 − σ2

0

σ̂2
1 − σ2

1

)
d−−→ N (0,Ωnon) .

which completes the proof of Theorem 4.3.

Corollary 4.4. As a result of Theorem 4.3, σ̂2
0/σ̂

2
1 has a log-normal distribution.

To be more specific, we have the following alternative asymptotic distribution of the
semiparametric estimator of the variance ratio.

σ̂2
0/σ̂

2
1

d−−→ LN
[
log(σ2

0/σ
2
1),Ωnon/n

]
. (27)

Using the result of Theorem 4.3, we establish a nonparametric procedure for testing
the hypothesis of (19). The test statistic is similarly defined by

TS2 =

√
n
[
log(σ̂2

0/σ̂
2
1)− log(r0)

]
√
Ωnon

. (28)

Under the null hypothesis σ2
0/σ

2
1 = r0, TS2

d−−→ N(0, 1). Note that Ωnon in TS2

can be estimated using the central moments from the two sample data sets when in
implementing the test.

5. Asymptotic Relative Efficiency of Parameter Estimators and Tests

We have introduced parametric and semiparametric tests for testing the equality of
two independent population variances based on the variance ratio in early sections.
In this section, we present large sample comparisons between the nonparametric and
semiparametric estimators of the variance ratios and the nonparametric and semipara-
metric tests for the equality of variances as well. We use Pitman’s asymptotic relative
efficiency as a metric to compare the proposed large sample procedures.

Lemma 5.1. Under the same notations in 3.1 and Theorem 4.3, we have

var

[
log

(
σ̃2
0

σ̃2
1

)]
< var

[
log

(
σ̂2
0

σ̂2
1

)]
.

Proof. From the proof of Theorem 3.2 of Wan et al. Wan et al (2016), we have

var(σ̃2
0 − σ̂2

0) =
ρ

n0

{
C2 − (C0, C

τ
1 )A

−1

(
C0

C1

)}
.

var(σ̃2
1 − σ̂2

1) =
1

n1

{
C ′
2 − (C ′

0, C
′τ
1 )A−1

(
C ′
0

C ′
1

)}
.

cov(σ̃2
0 − σ̂2

0, σ̃
2
1 − σ̂2

1) =− 1

n0

{
C ′′
2 − (C0, C

τ
1 )A

−1

(
C ′
0

C ′
1

)}
.

(29)

11



After performing some straightforward calculations, we have

var

[
log

(
σ̂2
0

σ̂2
1

)]
− var

[
log

(
σ̃2
0

σ̃2
1

)]
=

1

n
U τ
(
Σnon − Σsemi

)
U

= U τ

(
var(σ̃2

0 − σ̂2
0) cov(σ̃2

0 − σ̂2
0, σ̃

2
1 − σ̂2

1)
cov(σ̃2

0 − σ̂2
0, σ̃

2
1 − σ̂2

1) var(σ̃2
1 − σ̂2

1)

)
U

=
1

σ4
0

var(σ̃2
0 − σ̂2

0)−
2

σ2
0σ

2
1

cov(σ̃2
0 − σ̂2

0, σ̃
2
1 − σ̂2

1) +
1

σ4
1

var(σ̃2
1 − σ̂2

1)

= var

(
σ̃2
0 − σ̂2

0

σ2
0

− σ̃2
1 − σ̂2

1

σ2
1

)
> 0,

which completes the proof.

We will discuss the asymptotic relative efficiency respectively in the following sub-
sections.

5.1. Asymptotic Relative Efficiency of Estimators of Variance Ratio

Since both nonparametric and semiparametric estimators of the variance ratio are
asymptotically unbiased, we assess the performance of the estimators using asymptotic
relative efficiency which is defined as the ratio of the two corresponding variances.

Theorem 5.2. The empirical likelihood-based semiparametric estimator of the vari-
ance ratio is asymptotically more efficient than its non-parametric counterpart. That
is,

var

(
σ̃2
0

σ̃2
1

)
< var

(
σ̂2
0

σ̂2
1

)
. (30)

Proof. Let V = (1/σ2
1,−σ2

0/σ
4
1) = (σ2

0/σ
2
1)U

τ . U is specified in Theorem 4.3. We take
first-order Taylor expansion on the two estimators of the variance ratio at the true
values of the two population variances σ2

0 and σ2
1 as follows.

σ̃2
0

σ̃2
1

=
σ2
0

σ2
1

+ V τ

(
σ̃2
0 − σ2

0

σ̃2
1 − σ2

1

)
+ op(∆) (31a)

σ̂2
0

σ̂2
1

=
σ2
0

σ2
1

+ V τ

(
σ̂2
0 − σ2

0

σ̂2
1 − σ2

1

)
+ op(∆) (31b)

Taking the variance of (31b) and (31a) and then taking the difference of the two

12



equations yield

var

(
σ̂2
0

σ̂2
1

)
− var

(
σ̃2
0

σ̃2
1

)
=

1

n
V τ (Σnon − Σsemi)V

using the same notations and similar steps of simplification in the proof of Lemma 5.1,
we have

1

n
V τ (Σnon − Σsemi)V =

σ4
0

σ4
1

× U τ

(
var(σ̃2

0 − σ̂2
0) cov(σ̃2

0 − σ̂2
0, σ̃

2
1 − σ̂2

1)
cov(σ̃2

0 − σ̂2
0, σ̃

2
1 − σ̂2

1) var(σ̃2
1 − σ̂2

1)

)
U

=
σ4
0

σ4
1

var

(
σ̃2
0 − σ̂2

0

σ2
0

− σ̃2
1 − σ̂2

1

σ2
1

)
> 0.

This means that the semiparametric variance ratio is asymptotically more efficient
than the non-parametric estimate of the variance ratio.

Next, we discuss the asymptotic relative efficiency of the two proposed large sample
tests based on the variance ratio.

5.2. Asymptotic Relative Efficiency of Tests

Since both non-parametric (28) and semi-parametric (20) tests are consistent, the
asymptotic power under the global alternatives approaches unity. To assess the per-
formance of these tests, we compare the sensitivity of these tests under the local
alternatives that converge to the null hypothesis. The Pitman’s asymptotic relative ef-
ficiency (ARE) will be used as a measure for asymptotic comparison between tests (28)
and (20). The idea behind Pitman’s relative efficiency between two tests is to compare
the sample sizes required to achieve the same power at a given common nominal level
α. The smaller the sample size, the better the corresponding test.

For more detail on Pitman’s efficiency and other efficiency metrics, we refer to
monographs of Serfling (1980) and van der Vaart (2000). In this section, without loss
of generality, we consider the following right-tailed test.

H0 :
σ2
0

σ2
1

≤ 1 and Ha :
σ2
0

σ2
1

> 1 (32)

The local alternatives in this section will be chosen in the following form, for some
h > 0,

Hn : rn = log
[(
σ2
0/σ

2
1

)
(1 + 1/

√
n)h
]
= log

[
σ2
0(1 + 1/

√
n)h

σ2
1

]
(33)

Apparently, limn→∞ rn = r0 = σ2
0/σ

2
1. Next, we derive the asymptotic distribution of

log
[
σ̃2
0/σ̃

2
1

]
under local alternatives Hn for i = 1, 2, · · · ,.

The regularity conditions of Pitman’s approach are based on the sampling distribu-
tion of the test statistic under alternatives. For the semiparametric test semiparametric
(20), we expand the semiparametric log variance ratio, denoted by T̃n = log(σ̃2

0/σ̃
2
1),
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under the local alternatives at (σ2
0(1 + 1/

√
n)h, σ2

1) to find the sampling distribution
and obtain

T̃n = log

[
σ̃2
0

σ̃2
1

]
= log

[
σ2
0(1 + 1/

√
n)h

σ2
1

]
+ U τ (n)

(
σ̃2
0 − σ2

0(1 + 1/
√
n)h

σ̃2
1 − σ2

1

)
+ op(∆(n))

(34)
where

U(n) =

(
1

σ2
0(1 + 1/

√
n)h

,− 1

σ2
1

)τ

and ∆̃(n) = ||σ̃2
0 − σ2

0(1 + 1/
√
n)h||+ ||σ̃2

1 − σ2
1||

(35)
Furthermore, we denote

varHn
(T̃n) = U τ (n)Σsemi(n)U(n) = Ωsemi(n) (36)

Next we list several regularity conditions based on the limiting behaviors of T̃n.

(C1). Asymptotic normality of T̃n under Hn:

√
n(T̃n − EHn

[T̃n])√
Ωsemi(n)

Hn−−−−→ N(0, 1). (37)

From (34), we have

EHn
[T̃n] = log

[
σ2
0(1 + 1/

√
n)h

σ2
1

]
(C2).

lim
n→∞

Ω(n) = lim
n→∞

[U τ (n)ΣsemiU(n)] = U τΣsemiU = Ωsemi.

(C3). As n → ∞,

lim
n→∞

[
EHn

(σ̃2
0/σ̃

2
1)− EH0

(σ̃2
0/σ̃

2
1)√

varHn
(σ̃2

0/σ̃
2
1)

]
= lim

n→∞

h log(1 + 1/
√
n)√

Ωsemi/
√
n

=
h√

Ωsemi
(38)

The limit in (38) is customarily called the efficacy of the semiparametric test (20).
With the above regularity conditions C1-C3, we can calculate the power function of
test (20) based on local alternatives in the following theorem.

Theorem 5.3. Under the regularity conditions C1-C3 and given nominal level α, the
asymptotic limiting power of test (20) under the local alternative (33) is given by

lim
n→∞

πS
n (Hn : n) = 1− Φ

(
zα − h√

Ωsemi

)
(39)

where zα is the value that satisfies Φ(zα) = 1 − α, Φ() is the cumulative distribution
function of the standard normal distribution.
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Proof. Note that, for a given nominal level α, πS(H0 : n) = α = P (T̃n > tSα,n|H0).
This means

tSα,n − log(σ2
0/σ

2
1)√

Ωsemi/n
= zα,

that is equivalent to

tSα,n = log(σ2
0/σ

2
1) + zα

√
Ωsemi/n = EH0

(T̃n) + zα
√

Ωsemi/n. (40)

The power function is defined by

πS(Hn : n) = P (T̃n > tSα,n|Hn) = P

(
T̃n − EHn

(T̃n)√
Ωsemi(n)/n

>
tSα,n − EHn

(T̃n)√
Ωsemi(n)/n

)
(41)

Let

zn =
T̃n − EHn

(T̃n)√
Ωsemi(n)/n

Then from (C1), zn → N(0, 1). Therefore,

πS(Hn : n) = 1− Φ

(
tSα,n − EHn

(T̃n)√
Ωsemi(n)/n

)

Note that, using (40), we obtain

tSα,n − EHn
(T̃n)√

Ωsemi(n)/n
=

EH0
(T̃n) + zα

√
Ωsemi/n− EHn(Tn)√

Ωsemi(n)/n

= zα − EH0
(T̃n)− EHn

(T̃n)√
Ωsemi(n)/n

= zα − h log(1 + 1/
√
n)√

Ωsemi(n)/
√
n
. (42)

The limit of the last term in the above equation is given below by using (C2) and
(C3).

lim
n→∞

h log(1 + 1/
√
n)√

Ωsemi(n)/
√
n

=
h√

Ωsemi
.

Using the Continuous Mapping Theorem, we obtain the following limiting power func-
tion under local alternatives.

lim
n→∞

πS
n (Hn : n) = 1− Φ

(
zα − h√

Ωsemi

)
. (43)

This completes the proof.
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We can also establish a Theorem analogous to Theorem 5.3 based on nonparametric
test (28) as follows for some h′ > 0.

Theorem 5.4. Under similar regularity conditions, we have the following limiting
power function for non-parametric test (28) in the following

lim
n→∞

πN
n (Hn : n) = 1− Φ

(
zα − h′√

Ωnon

)
, (44)

where h′ > 0.

We now look at the sample sizes required for both semiparametric test (20) and
non-parametric test (28) to attain the power with the common nominal level α. The
two limiting powers are equal if and only if

1− Φ

(
zα − h√

Ωsemi

)
= 1− Φ

(
zα − h′√

Ωnon

)
which implies

h√
Ωsemi

=
h′√
Ωnon

, equivalently,
h

h′
=

√
Ωsemi√
Ωnon

(45)

Since both power functions are calculated using the local alternatives, this means

h√
n
=

h′√
n′

(46)

where n and n′ are corresponding sample sizes of semiparametric (20) and non-
parametric tests (28). From (45) and (46), we obtain

n

n′ =
Ωsemi

Ωnon
< 1. (47)

The last inequality is based on the result of Lemma 5.1. We summarize the above
result in the following main Theorem of this section.

Theorem 5.5. Under model (1), empirical likelihood-based semiparametric test (20)
is asymptotically more efficient than the non-parametric test (28).

6. Bootstrap Semiparametric Test

We have discussed the asymptotic properties of the semi-parametric estimator of the
variance ratio and the hypothesis testing on the equality of two variances. In this
section, we present a model-based semi-parametric Bootstrap test for the equality of
two independent population variances. The Bootstrap sampling plan uses the semi-
parametric estimators of the two population distributions specified in (8). The Boot-
strap test will be based on the confidence interval approach as suggested by Hall and
Wilson (1991).
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The Bootstrap test algorithm is outlined in the following:

Bootstrap Algorithm
Let {x1, x2, · · · , xn0

} and {y1, y2, · · · , yn1
} be the original samples taken from

two populations G0(x) and G1(y). Let the pooled sample T = {T1, T2, · · · , Tn} =
{x1, x2, · · · , xn0

, y1, y2, · · · , yn1
} . Under model (1), the semiparametric estimators of

G0(t) andG1(t), denoted by G̃0(t) and G̃1(t), are given in (8). Let w̃ = exp(α̃+β̃τr(x)).
We write p̃i = dG̃0(Ti) and q̃i = p̃iw̃i = dG̃1(Ti).

Step 1. Fit model (1) to the pooled data and estimate G̃0(t) and G̃1(t), and obtain p̃i
and q̃i for i = 1, 2, · · · , n, as explicitly in (6) and (7).
Step 2. Take a weighted bootstrap sample of size n0 with weights p̃i from the pooled
data set, denoted by X∗b, and another bootstrap sample of size n1 with weights q̃i,
denoted by Y ∗b.
Step 3. Fit model (1) to the pooled data T ∗b = {X∗b⋃Y ∗b} and calculate the bootstrap
variance σ̃2∗

1 and σ̃2∗
2 as defined in (9). Define θ∗b = σ̃2∗

1 /σ̃2∗
2 .

Step 4. Repeat S tep 2 and S tep 3 B times and obtain B semi-parametric variance
ratios {θ∗1, θ∗2, · · · , θ∗B}.
Step 5. 100(1−α)% two-sided bootstrap percentile confidence interval of the variance
ratio θ is defined by (θ∗α/2, θ

∗
1−α/2). If the claimed variance ratio under H0 falls outside

the Bootstrap percentile confidence interval, we reject the null hypothesis H0 at the
level α.

7. Power Analysis via Simulation Study

We have developed the asymptotic theory of the proposed two-sample semi-parametric
tests of population variances. In this section, we conduct numerical experiments to
study the small sample properties of the tests.

To perform power comparisons between the proposed tests and some existing tests,
We use the well-known normal and Gamma distributions in the simulation studies.

The hypothesis test in the study is

H0 : σ
2
1/σ

2
2 = 1 v.s. Ha : σ2

1/σ
2
2 ̸= 1

The tests to be included in the simulation studies are parametric F test (F vari-
ance ratio, FVR), non-parametric variance ratio (NPVR) test (Section 4), semi-
parametric variance ratio (SPVR) test (Section 3), semi-paramteric variance difference
(SPVD) test in Wan et al (2016) and the bootstrap semi-parametric variance ratio test
(BSPVR) proposed in the previous section.

For the four non-bootstrap tests, we simulate 1000 Monte Carlo samples from the
theoretical populations that satisfy the assumption of model (1) and perform each of
the four tests based on different parameter configurations so the true variance ratio
(or difference) differs from the one claimed in the null hypothesis.

For the bootstrap semi-parametric variance ratio test, for each of the 1000 simula-
tions, we generate 1000 bootstrap samples as described in the previous section to find
the bootstrap percentile confidence interval and use the two-sided confidence interval
to test the hypothesis on variance ratio θ.

The nominal significance level 0.05 will be used in the following simulation studies.
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Figure 1. Power curves of various tests based on the samples taken from two independent normal populations

with different sample sizes.

7.1. Case 1: Normal Population

We first consider the case that both samples are taken from normal populations
N(µ1, σ

2
1) and N(µ2, σ

2
2). Under model (1) with r(x) = (x, x2)τ and β = (β1, β2)

τ .
Then the three regression coefficients of model (1) are specified in the following.

α = log
σ1
σ2

+
1

2

(
µ2
1

σ2
1

− µ2
2

σ2
2

)
, β1 =

µ2

σ2
2

− µ1

σ2
1

, and β2 =
1

2

(
1

σ2
1

− 1

σ2
2

)
We consider sample sizes of (n0, n1) = {(40, 60), (50, 50), (60, 40)}. Also, we let

µ1 = 0, µ2 = 1, σ1 = (5/10, 5/9, 5/8, 5/7, 5/6, 1, 6/5, 7/5, 8/5, 9/5, 10/5) and σ2 = 1.
For each combination of (µ1, µ2, σ1, σ2, n0, n1), we generate 1000 independent sets of
combined Monte Carlo samples from N(µ1, σ

2
1) and N(µ2, σ

2
2). The power curves of

all tests are given in Figure 1.
As anticipated, we can see from Figure 1 that all tests behave similarly when both

samples are taken from normal populations.

7.2. Case 2: Gamma Population

Let G0(x) and G1(x) be Gamma(α1, λ1) and Gamma(α2, λ2) with density functions

g0(x) =
λα1

1

Γ(α1)
xα1−1e−λ1x and g1(x) =

λα2

2

Γ(α2)
xα2−1e−λ2x, (48)

respectively. Under model (1) with

r(x) = (x, log(x))τ and β = (β1, β2)
τ .

Similarly, we can specify the three regression coefficients of (1) with the given Gamma
parameters in the following.

α = log

(
Γ(α1)λ

α2

2

Γ(α2)λ
α1

1

)
, β1 = λ1 − λ2 and β2 = α2 − α1
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Figure 2. Power curves of various tests based on the samples taken from two independent Gamma populations

with different sample sizes.

For given α1 = 4, α2 = 2, λ1 =
√
2, we find the true ratio of the two variances to be

θ =
α1

λ2
1

× λ2
2

α2
=

4

2
× λ2

2

2
= λ2

2

We now consider sample sizes of (n0, n1) = (40, 60), (50, 50), (60, 40) and λ2 =
(5/10, 6/10, 7/10, 8/10, 9/10, 1, 10/9, 10/8, 10/7, 10/6, 10/5). The choice of λ2 results
different variance ratio (0.25, 0.36, 0.49, 0.64, 0.81, 1.00, 1.23, 1.56, 2.04, 2.78, 4.00). For
each combination of (α1, α2, λ1, λ2, n0, n1), we generate 1000 independent sets of com-
bined Monte Carlo samples from Gamma(α1, λ1) and Gamma(α2, λ2) and fit the den-
sity ratio model (1) to each of the pooled data and then perform all five tests. The
simulated power of all tests is summarized in Figure 2.

From the power curves in Figure 2, we can see the following patterns

(1) The parametric F test (PVR) produces was inappropriate since both populations
are not normally distributed. This also reflected in all three curves since the
observed p-value and actual significance of the parametric F test (FVR) are
significantly different.

(2) The non-parametric variance ratio (NPVR) test described in Section 4 also has
a minor issue of power inflation since the observed p-value is slightly bigger than
the actual significance level.

(3) The semiparametric variance ratio (SPVR) and the bootstrap semi-parametric
variance ratio (BSPVR) are marginally more powerful than the semi-parametric
variance difference (SPVD) test.

7.3. Exploring Impact of Sample Size Allocation

For a given overall sample size, the optimal allocation of sub-sample sizes to achieve the
best statistical power is of practical importance in problems of multiple comparisons.
Numerous studies about this topic related to comparing population means have been
conducted in the statistics literature and relevant disciplines as well under various
assumptions about the underlying populations. See, for example, the recent work of
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Nam (2009), Happ et. al. (2019), Jan and Shieh (2011), and Rusticus and Lovato
(2014), etc. Rusticus and Lovato (2014) conducted a comprehensive simulation study
about factors that impact the power of four different tests for two- and three-sample
comparisons using the same population variance and concluded that equal sample
sizes are more powerful than unequal sample sizes and the power decreases as samples
become increasingly imbalanced.

The proposed semiparametric tests are model-based procedures. The underlying
special density ratio model (1) is a retrospective logistic regression model. Since the
empirical-likelihood-based semiparametric estimators of the regression coefficients and
the estimated semiparametric cell probabilities (6) are functions of the ratio of the two
sample sizes ρ. Hence, the variance of the proposed test statistic is also a function of
ρ. This means that for given overall sample size in the proposed test, the sample size
ratio impacts the variance of the test statistic. Therefore, the sample size ratio impacts
the power of the proposed tests.

To see how the ratio of the two sample sizes impacts the power of the
tests, we simulate samples from both normal and Gamma populations with
different parameter configurations (see the caption of Figure 3) to meet the
assumptions of the underlying model (1). The overall sample size in this
simulation study is 200. The sub-sample sizes sample sizes are chosen to
be n0 = (20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180) and
n1 = (180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20). The power
curves were drawn based on the different ratios of sample sizes, n0/n1 =
c(1/9, 3/17, 1/4, 1/3, 3/7, 7/13, 1/3, 9/11, 1, 11/9, 3/2, 13/7, 4, 3, 4, 17/3, 9).

For normal populations, we simulate two scenarios: (1). N01(0, (5/7)
2) and N1(1, 1)

with a fixed variance ratio V R = 25/49 < 1; (2). N01(0, (7/5)
2) and N1(1, 1) with

a fixed variance ratio V R = 49/25 > 1. For Gamma populations, We also simulate
two scenarios: (1). Gamma01(4,

√
2) and Gamma1(2, 3/5) with a fixed variance ratio

V R = 9/50 > 1; (2). Gamma02(4,
√
2) and Gamma1(2, 5/3) with a fixed variance ratio

V R = 18/25 < 1.
With the above given overall sample size of 200 and fixed variance ratios (differ-

ent alternatives), we simulate sub-samples with the preset ratio of sample sizes and
calculate estimated power. The results are summarized in Figure 3.

We can observe the following patterns regarding the sample ratio and the power of
the proposed two-sample variance tests from Figure 3.

1. If both underlying populations in the study are from normal and gamma families,
the power of both SPVR and BSPVR tests decreases as the sample size ratio deviates
far from unity when the variance ratio is either greater than or less than 1.

2. For the fixed overall sample size of 200 and variance ratios of the two underlying
populations from either normal and Gamma families, both proposed tests achieve the
best power when both sub-sample sizes are approximately the same. This basically
says that the balanced design will result in a better statistical power.

Remark 1. Although the underlying populations in the simulation were chosen from
normal and gamma families respectively, the actual underlying populations are arbi-
trary provided that model (1) holds. The above observations are dependent on model
(1) but not particular distributions.

Remark 2. The optimal sub-sample allocation in the two-sample nonparametric vari-
ance test discussed in Section 4 is not approximately evenly split the fixed overall
sample size. For example, Let F0(x) and F1(x) be the distributions of the two corre-
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Figure 3. Power curves of semiparametric and bootstrap semiparametric tests of equal variance

based on the samples taken from two independent populations with different sample sizes. Left panel:

The two normal distributions are: [N01(0, 52/72), N1(1, 1)] and [N02(0, 72/52), N1(1, 1)]. Right panel:
[Gamma0(4,

√
2), Gamma11(2, 3/5)] and [Gamma0(4,

√
2), Gamma12(2, 5/3)]

sponding underlying populations, we can see from Theorem 4.2 and Theorem 4.3 that
the variance of the test statistic is dependent on both the sample size ratio, ρ and the
ratio of functions of moments associated with corresponding unrelated populations
F0(x) and F1(x) as well.

Remark 3. Model (1) assumes the relationship between the two density functions of
the underlying populations to be g1(x) = exp(α+βτx)g0(x). This means one density is
uniquely determined by the other. Hence, the variance of the proposed semiparametric
test is a function of only the sample size ratio (ρ) and the baseline distribution G0(x).
This implies that the power function of the test is only a function of the sample size
ratio for given overall sample size and one of the populations.

8. Numerical Examples

In this section, we present two numerical examples that were analyzed by various
authors in the past. The purpose of presenting thes numerical examples is to
demonstrate how to implement the proposed tests. The non-parametric test (NPVR)
and the semiparametric test of the difference of variances (SPVD) by Wan et al
(2016) were also used baseline tests.

Example 1. The data used in this example come from a case-control study conducted
in Mayo Clinic in which sera from n0 = 51 ’control’ patients with pancreatitis and
n1 = 90 ’cases’ with pancreatic cancer were studied with a cancer antigen (CA125)
and with a carbohydrate antigen (CA19-9). Wiend et al (1989) used this data in
analyzing sensitivity-specificity for comparing two diagnostic markers. Since the orig-
inal data are of several orders of magnitude and Shapiro-Wilk’s normality test yields
p-values close to 0, a log transformation is used in our data analysis. However, the
transformed data still could not pass the Shapiro-Wilk’s normality test at α = 0.05,
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the usual parametric F test cannot be used. Qin and Zhang (2003) performed a
Kolmogorov-Smirnov like goodness-of-fit test of model (1) with r(x) = (x, x2)τ that
was fitted to this data. The model has a good fit for the data. We use the sample
under the model (1) and obtained the corresponding p̃i and q̃i for i = 1, 2, · · · , n.

The semiparametric likelihood estimate of parameters are given by (α̃, β̃1, β̃2) =
(0.560,−1.914, 0.451). We perform the four tests used in the simulation study and the
report the statistics in the following table 1

Table 1. Summarized statistics of Example 1.

Name of Tests

SPVD SPVR BSPVR (C.I.) NPVR

TS -7.841 -8.940 (0.080, 0.209) -9.445
p-valuea < 0.001 < 0.001 NAb < 0.001

aBased on the asymptotic normal distribution of test statistics.
b The H0 was rejected at level 0.05.

All tests reject the hypothesis H0 : σ
2
1/σ

2
2 = 1 v.s. H1 : σ

2
1/σ

2
2 ̸= 1.

Example 2. The data set used in this example was collected from research by Reaven
and Miller (1979) on a diabetes study. The steady-state plasma glucose (SSPG) levels
based on the oral glucose tolerance test were taken from a subset of 109 subjects that
were used in this example. Among these subjects, n0 = 76 subjects were normal and
n1 = 33 subjects had overt diabetes. We are interested in testing the equality of the
variances of SSPG levels of both diseased and disease-free populations. As anticipated,
the Shapiro-Wilk test for normality fails the data. Wan et al (2016) fit model (1) with
r(x) = x to the data and performed a Kolmogorov-Smirnov test. The test result
indicates that model (1) fits the data well.

We first fit the density ratio model (1) to the data and obtain α̃ = −6.278 and
β̃ = 0.031. Using the resulting p̃i and q̃i defined in (6) and (7), respectively, to estimate
the weighted variances σ̃2

1 and σ̃2
2.

Next, we perform the four tests for the hypothesis:

H0 : σ
2
1/σ

2
2 = 1 v.s. H1 : σ

2
1/σ

2
2 ̸= 1.

The statistics of the tests are summarized in the following Table 2

Table 2. Summarized statistics of Example 2.

Name of Tests

SPVD SPVR BSPVR (C.I.) NPVR

TS -2.350 -2.804 (0.246, 0.820) -3.052
p-valuea 0.019 0.005 NAb 0.002

aBased on the asymptotic normal distribution of test
statistics.
b The H0 was rejected at level 0.05.

Similar to the results we obtained in Example 1, all four tests reject the null hy-
pothesis of σ2

1/σ
2
2 = 1.

Remark 4. The SPVD, SPVR and BSSPVR are same type of model-based test in
which the underlying model allows information sharing in the two independent sam-
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ples. The two-sample nonparametric test of variances (NPVR) does not use the shared
information from both samples and is less powerful than the three semiparametric pro-
cedures. It is within our expectation that the resulting statistical decisions of the four
tests are the same.

Remark 5. Since the proposed two-sample semiparametric test of variance is devel-
oped based on model (1), a goodness-of-fit test such as Qin and Zhang (1997) should
be conducted before using this test as we did in the examples.

9. Conclusion

In this paper, we developed two semiparametric tests (SPVR, BSPVR) for testing the
ratio of two population variances based on the assumption that the two population
distributions have a structural relationship specified in the underlying model.

We use the nonparametric test (NPVR) of variance ratio as the baseline and study
the relative efficiency of the proposed semiparametric estimators. We also studied the
relative efficiency of the semiparametric test the baseline nonparametric test. The
theoretical results show that the semiparametric estimator and test are more efficient
than the non-parametric estimator and the test.

In the simulation study, we compared five different tests based on samples taken from
normal and Gamma distributions respectively. For normal populations, all five tests
behave similarly. For samples taken from Gamma distributions, parametric and non-
parametric tests, the observed p-values of FVR and NPVR under H0 are significantly
higher than the nominal level meaning that these two tests are inappropriate for testing
equality of non-normal population variances.

In terms of sampling design, the power of all proposed semiparametric tests achieves
their highest power balanced designs. For the standard non-parametric test, a balanced
design may not achieve the best power since the ratio of functions of moments of the
unrelated population distributions also impacts the power of the proposed tests.
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