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ABSTRACT

We unify the four commonly used polychotomous logistic regression (PLR) models,

namely, baseline-logit, adjacent-logit, cumulative logit and continuation ratio,

and define a super structure for polychotomous logistic regression models under

case control data. Zhang’s (2000) information matrix test of goodness-of-fit for

retrospective binary logistic regression models has been extended to assess the

goodness-of-fit of the proposed polychotomous logistic models. Some numerical and

simulation will also be presented.

AMS 2000 subject classifications. Primary 62F12; 62J12; 62P10

Keywords polychotomous logistic model, case-control study, semiparametric

model, goodness-of-fit, information matrix test, noncentral chi-square.

1. Introduction

The binary logistic regression model has been extremely attractive and played an

important role in many practical areas such as biomedical, social sciences, political

science, etc. It models the log odds of observing the outcome of interest from the

possible outcome adjusted (controlled) by some risk factors. Let Y be the response

variable taking either value 2 (disease, success, etc.) or value 1 (non-disease, failure,

etc) and X be the p-dimensional vector of risk factors affecting the probabilities of

observing Y = 2. Let α and β be the regression coefficients. The p-dimensional vector

β usually called the log-odds ratio parameter associated with the p-risk factors. The

binary logistic regression model is defined as

log
P (Y = 2|X = x)

1− P (Y = 1|X = x)
= α+ βTx (1)

Let πi(x) = P (Y = i|X = x) for i = 1, 2. Clearly π0(x)+π1(x) = 1. Using the notation

of cell probability πi(x), we can re-express (1) as

log
π2(x)

1− π2(x)
= log

π2(x)

π1(x)
= α+ βTx (2)

That is, the binary logistic regression model links the log odds of observing Y = 1

(disease) with a linear combination of risk factors α+βTx and α and β are naturally
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called odds ratio parameters. β reflect the contribution of associated risk factors to

the odds ratio. Note that if we link the log of odds of observing Y = 0 with a linear

predictor, then we have

log
π1(x)

1− π2(x)
= log

π1(x)

π2(x)
= α∗ + β∗Tx (3)

Since α∗ = −α and β∗ = −β∗, model (1) and model (3) are equivalent.

In many practical situations, there are more than two categories for the response

variable Y. For instance, in epidemiologic studies, the variable of interest may be the

disease severity taking values non-disease (1), mild (2), moderate (3), and severe (4).

We can use a similar approach to link the odds of observing certain disease severity with

a linear predictor. There are several ways to define logits according to the ordinality of

the response variable Y. For the nominal response Y with J categories, we can select

any category, say the category J , as the reference and define log odds (restricted to

the two selected categories) similar to (1).

log
πj(x)

πJ(x)
= αj + βT

j x, for j = 1, 2, · · · , J − 1. (4)

which is usually called generalized logit model or baseline logit model. Since Y has J

categories, we need J −1 log odds to fully specify the model. When J = 2, (4) reduces

to (1). This model has been studied and applied to different subject areas, to name a

few, by [14], [2], [3], [6], and among others.

For ordinal variable Y , three models with practical meaning are defined by incorpo-

rating the ordinal information. The first of these models is called adjacent logit model

having the following definition

log
πj(x)

πj+1(x)
= αj + βT

j x, for j = 1, 2, · · · , J − 1. (5)

The adjacent logit model uses the ordinal information in Y , but it can be, in fact,

expressed into a baseline logit model [1]. In other words, we can fit a generalized logit

model to data and then use the relationship between the regression coefficients of the

two models to get fitted adjacent logit model, and vice versa. Since Y is ordinal, it
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is meaningful to define cumulative probability γj(x) = P (Y ≤ j) =
∑j

k=1 π(x). The

next ordinal logit model is defined based on γj(x) with the following form

log
γj(x)

1− γj(x)
= αj + βT

j x, for j = 1, 2, · · · , J − 1. (6)

where α1 ≤ α2 ≤ · · · ≤ αJ−1 which guarantees that the fitted probabilities are non-

negative. This model links the log of odds of observing response Y being lower than

the j-th category with a linear predictor. It is essentially a binary logistic model for

each specific choice of j. Since it is defined based on cumulative response probability,

it is naturally called cumulative logit model in literature. [14] pointed this model to

be a proportional odds model when the log-odds ratio parameters are assumed to be

constant across all J − 1 logits (βj = β) since

γj(x1)/(1− γj(x1))

γj(x2)/(1− γj(x2))
= exp(−βT (x1 − x2)), for j = 1, 2, · · · , J − 1. (7)

Note that if Y represents the discrete the survival time, (1−γj(x1)) becomes survival

function. Therefore, model (7) can be used to model discrete survival time. Recently,

[13] used the idea of the definition of the proportional odds model to propose a general

method for expanding existing parametric families. The last model we will cover in

this paper is usually called continuation ratio logistic regression in literature, see for

example, [6], [14], [1], and among others. The definition of the model is given by

log
πj(x)

1− γj(x)
= αj + βT

j x, for j = 1, 2, · · · , J − 1. (8)

or

log
πj+1(x)

γj(x)
= αj + βT

j x, for j = 1, 2, · · · , J − 1. (9)

Unlike ordinal PLR models (5) and (6) having palindromic invariant property, the

continuation ratio logistic model does not possess this property. Reversing the response

Y in the continuation ratio model yields inequivalent models. Therefore, (8) and (9)

are not equivalent even though the inferential procedures for them are the same. Be-
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cause of the irreversibility of the response Y in the continuation ratio model, it has a

special attraction to the cases in which the response has a natural special hierarchical

structure. In the rest of the discussion, we only focus on the continuation ratio logis-

tic model (8). The continuation ratio logistic model has been receiving considerable

attention from researchers in different areas, such as [9], [25], [11], [23] and [4].

Since these polychotomous logistic regression models consist of a sequence of binary

logits according to the ways of using the ordinality of the response, fitting these models

to prospective datasets is similar to fitting a binary logistic regression model using any

general-purpose statistical packages. Pearson and deviance χ2 are the standard tests

for goodness-of-fit. However, in many situations, it is either impractical or impossible

to collect data prospectively. For instance, in an epidemiologic study, if the disease

under investigation is rare (one out of one million)or has an extremely long latency

(30 years), taking data prospectively will end up with either very few cases or 30 years

of waiting time for the disease development. [5] and [21] systematically investigated

the ways of fitting the logistic regression model to retrospective data and concluded

that it is valid to fit the logistic regression model to the retrospective data as if it were

collected prospectively, but the inference on the intercept parameter is not possible

unless the sampling fractions are given. [24] pointed out that such an approach is

sensitive to model misspecification.

Using empirical likelihood method [18, 19], [22] proposed a profiled semiparametric

empirical likelihood method combining estimation and a Kolmogorov-Smirnov type

goodness-of-fit test for the retrospective logistic regression model. In the same direc-

tion, [28, 29] and [20] studied generalized logit, proportional odds and continuation

ratio logistic regression based on case-control data respectively. Since there is no an-

alytical expression for the proposed Kolmogorov-Smirnov test statistic, a Bootstrap

procedure was used to establish the decision rule.

In this paper, we first define a unified structure of the aforementioned four retrospec-

tive polychotomous logistic regression models based on the work of [28, 29] and [20]

and then extend [27] information matrix test of goodness of fit to the unified structure

of retrospective polychotomous logistic regression models. In Section 2, we propose

a unified structure of retrospective polychotomous logistic regression models and the

asymptotic results of the semiparametric empirical likelihood estimators. In Section

3, we establish the information matrix equality. The construction of the information

5



matrix test statistic (χ2) will be presented in Section 4. Some numerical results based

on real-life data and power analysis based on a local alternative via simulation study

are given in Section 5, and Section 6 includes a summary and concluding remarks.

Technical details are given in the appendix.

2. Unified Structure of Retrospective PLR

In this section, propose a unified structure for retrospective PLR models. The adjacent

logit and the generalized logit models are equivalent in the sense that one can be

converted to the other since the regression coefficients in both models have a one-to-

one linear relationship (see, for example, Agresti, 2002, pages 286-287). Throughout

this paper, PLR means generalized logit, proportional odds, and continuation ratio

logistic regression models.

Let {Xi1, Xi2, · · · , Xini
} be the random sample collected from the i-th population

(i-th category of Y ) for i = 1, · · · , I. Assume further that these samples are jointly

independent. Denote P (Y = i) = τi, the population proportion of i-th category, for

i = 1, · · · , I. According to Bayes Theorem, we have

P (X|Y = i) =
P (Y = i|X) · P (X)

P (Y = i)
=

πi(X)P (X)

P (Y = i)
. (10)

Let fi(x) and f(x) be the density functions of X given that Y = i and X respectively.

For i = 1, · · · , I−1, we define ωi = log[P (Y = i)/P (Y = I)] to be the sampling fraction

based on i-th and I-th subpopulations. Let θi = (αi, β
T
i )

T , θ = (θT1 , · · · , θTI−1)
T ,

γ = (γ1, γ2, · · · , γI−1)
T . Re-expressing (4), (6) and (8) in terms of πi(x) and solving

for πi(x) by using the fact that
∑I

i=1 πi(x) = 1, and plugging πi(x) in (10), we get the

following I-sample semiparametric model (see Zhang, 1999, 2001 and Peng & Zhang

2008 for details),

 XI1, · · · , XInI

i.i.d.∼ fI(x),

Xi1, · · · , Xini

i.i.d.∼ exp
(
γi + gi(x, θ)

)
· fI(x), for i = 1, · · · , I − 1,

(11)

where, for the generalized logit model,

gi(x) = βT
i x (12)
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and γi = αi + ωi; for the proportional odds model,

gi(x) = log
( si(x, α, β)− si−1(x, α, β)

sI(x, α, β)− sI−1(x, α, β)

)
(13)

with si(x, α, β) = exp(αi+βTx)/[1+exp(αi+βTx)] and γi = ωi; for the continuation

model,

gi(x, θ) =


βT
1 x+

∑I−1
l=2 log[1 + exp(αl + βTx)], i = 1,

αi + βT
i x+

∑I−1
l=i+1 log[1 + exp(αl + βTx)] i = 2, · · · , I − 2,

αI−1 + βT
I−1x, otherwise.

(14)

and γ1 = α1 + ω1 and γi = ωi for i > 1.

Remark 1. It is customarily assumed the equal odds ratio parameter (across all

logits) in the proportional odds model. That is β = βT
1 = βT

2 = · · · = βT
I−1 [14, 29].

Remark 2. It is seen that all intercepts in the retrospective generalized logit model

are inestimable (γi = αi + ωi for i = 1, · · · , I − 1); only α1 in retrospective contin-

uation ratio models is inestimable (γ1 = α1 + ω1), all intercepts in the retrospective

proportional odds models are estimable (γi = ωi for i = 1, · · · , I − 1).

Remark 3. The parameters in the vector θ vary depending on the correct model. In

retrospective generalized logit model, θi = βi for all i = 1, 2, · · · , I−1; in retrospective

proportional odds model, θi = (αi, β
T
i )

T for all i = 1, 2, · · · , I − 1; in retrospective

continuation ratio model, θ1 = β1 and θi = (αi, β
T
i )

T for all i = 2, · · · , I − 1.

3. Model Estimation and Some Asymptotic Results

For i = 1, · · · , I, let Fi(x) be the corresponding cumulative distribution of fi(x),

{T1, · · · , Tn} be the pooled sample {X11, · · · , X1n1
; · · · ;XI1, · · · , XInI

} with n =∑I
i=1 ni, Then from model (11) , we have following likelihood function

L(γ, θ, FI |X) =
[ I−1∏
i=1

ni∏
j=1

exp
(
γi + gi(Xij ; θ)

)
dFI(Xij)

][ nI∏
j=1

dFI(XIj)
]

=

n∏
s=1

ps

I−1∏
i=1

ni∏
j=1

{
exp

[
γi + gi(Xij ; θ)

]}
, (15)
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where ps = dFI(ts) is the empirical likelihood of FI(X) at point ts with
∑n

s=1 ps = 1,

and gi(x; θ) is specified respectively in (12), (13) and (14) for i = 1, 2, · · · , I. The

corresponding log-likelihood function is

l(γ, θ, FI) =

n∑
s=1

log ps +

I−1∑
i=1

niγi +

I−1∑
i=1

ni∑
j=1

gi(Xij , θ) (16)

The estimates of parameters θ, γi and the distribution FI(x) corresponding to the

density function fI(x) will be obtained by maximizing l(γ, θ, FI) subject to the fol-

lowing constraints, for s = 1, 2, · · · , n, i = 1, 2, · · · , I − 1,

1. ps ≥ 0, 2.
∑n

s=1 ps = 1, 3.
∑n

s=1 ps
{
exp[γi + gi(Ts; θ)] − 1

}
= 0. We

first use Lagrange Multipliers to maximize the log-likelihood function (16) with given

constraints by fixing parameters first and get profile MLE of ps

p̂s =
1

nI
· 1

1 +
∑I−1

i=1 ρi exp[γi + gi(Ts; θ)]
, (17)

where ρi = ni/nI for i = 1, 2, · · · , I − 1. One can see that p̂s is a function of data

values and unknown parameters γ and θ. In (16) we substitute p̂s for ps and get the

following semiparametric profile empirical log-likelihood function

l(γ, θ) = −n log nI −
n∑

s=1

log

{
1 +

I−1∑
i=1

ρi exp[γi + gi(Ts; θ)]

}
+

I−1∑
i=1

ni∑
j=1

[
gi(Xij , θ)+ γi

]
.

The corresponding score equations are given by, for u = 1, 2, 3, · · · , I − 1,

nu −
n∑

s=1

ρu exp[γu + gu(Ts; θ)]

1 +
∑I−1

m=1 ρm exp[γm + gm(Ts, θ)]
= 0, (18)

I∑
i=1

ni∑
j=1

[∂gi(Xij ; θ)

∂θ
−
∑I−1

m=1 ρm exp[γm + gm(Xij ; θ)] · ∂gm(Xij ; θ)/∂θ

1 +
∑I−1

m=1 ρm exp[γm + gm(Xij ; θ)]

]
= 0. (19)

The semiparametric MLE of (γ, θ), denoted by (γ̃, θ̃), is a solution to the above

system of score equations (18) and (19). Hence, the semiparametric empirical likelihood

estimate of p is given by
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p̃s =
1

nI
· 1

1 +
∑I−1

i=1 ρi exp[γ̃i + gi(Ts; θ̃)]
, (20)

The corresponding semiparametric estimate of Fi(x) under retrospective polychoto-

mous logistic regression model (11) are, for i = 1, 2, · · · , I − 1,

F̃I(t) =

n∑
s=1

p̃I[Ts≤t], F̃i(t) =

n∑
s=1

p̃ exp(γ̃i + gi(Ts : θ̃))I[Ts≤t]. (21)

We assume that ni/n approaches to a constant when n =
∑I

i=1 ni → ∞, for i =

1, · · · , I. Denote ρu = limn→∞ nu/nI , ρ = limn→∞
∑I−1

i=1 ni/nI , γI = 0, gI(x) = 0. Let

(γ0, θ0) be the true value of (γ, θ). Furthermore, we define, for u, v = 1, 2, · · · , I,

eu(x) = ρu exp[γu + gu(x, θ)]
∣∣∣
γ=γ0,θ=θ0

; (22)

gθ
T

u (x) =
∂gu(x, θ)

∂θT

∣∣∣
θ=θ0

; gθu(x) =
∂gu(x, θ)

∂θ

∣∣∣
θ=θ0

; gθθ
T

u (x) =
∂2gu(x, θ)

∂θ∂θT

∣∣∣
θ=θ0

;

(23)

euv(x) = ρu exp[γu + gu(x, θ)]ρv exp[γv + gv(x, θ)]|γ=γ0,θ=θ0 , u ̸= v;

euu(x) = −
I∑

u̸=v,v=1

euv(x), for u = 1, 2, · · · , I − 1;

P (x) = {1 +
I−1∑
m=1

ρm exp[γm + gm(x, θ)]}−1
∣∣
γ=γ0,θ=θ0

; (24)

auv = − 1

1 + ρ

∫
P (x)euv(x)dFI(x); for u ̸= v;

auu = −
I∑

u̸=v,v=1

auv, for u = 1, 2, · · · , I − 1;
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Consequently,

auI = − 1

1 + ρ

∫
P (x)eu(x)dGI(x) =

I−1∑
v=1

auv for u = 1, 2, · · · , I − 1.

S1 =
(
auv

)
u,v=1,2,··· ,I−1

, S2 =
(
(a

(θ)
1 )T , (a

(θ)
2 )T , · · · , (a(θ)

I−1)
T
)T

(25)

where

a(θ)
u =

1

1 + ρ

∫
eu(x)

(
gθ

T

u (x)− P (x)

I−1∑
m=1

em(x)gθ
T

m (x)
)
dFI(x)

S3 =
1

1 + ρ

∫ ( I−1∑
m=1

gθm(x)gθ
T

m (x)em(x)−P (x)

I−1∑
m=1

em(x)gθm(x)

I−1∑
m=1

em(x)gθ
T

m (x)
)
dFI(x).

(26)

D = diag
(

1
ρ1
, · · · , 1

ρI

)
, S = 1

1+ρ

 S1 S2

ST
2 S3

 , Ω =

D + U O1

O1 O2

 . (27)

where U is the (I − 1) × (I − 1) matrix with all elements being 1, O1 is an
[
(I −

1)(p+1)− 1
]
× (I − 1) zero matrix, O2 is an

[
(I − 1)(p+1)− 1

]
×
[
(I − 1)(p+1)− 1

]
zero matrix, p is the number of parameters in the corresponding retrospective PLR

model. With the above notations, we state the asymptotic normality of the estimators

of the regression coefficients as follows

Theorem 3.1. [20, 28, 29] Under retrospective polychotomous logistic regression

model (11), we have

n−1/2

(
∂l(γ0, θ0))

∂γT
,
∂l(γ0, θ0)

∂θT

)T

→P N(0, V )

consequently,

√
n
(
γ̃T − γT0 θ̃T − θT0

)T
→d N(0,Γ)

where V = S − (1 + ρ)(ST
1 , S

T
2 )(D + U)(ST

1 , S
T
2 )

T and Γ = S−1 − (1 + ρ)Ω. S1, S2, S

and Ω are specified in (25) and (27).
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4. Information Matrix Equality

In this section, we proposed an information matrix-based generalized moment χ2 test

to assess the fit of the retrospective PLR model (11). [26] proposed a parametric infor-

mation test using the fact that, under standard regularity conditions, the expectation

of the score derivation matrix Un(ξ) = −n−1{∂2l(ξ)/∂ξ∂ξT } and the score squared ma-

trix Vn(ξ) = n−1
∑n

i=1{∂l(ξ)/∂ξ}{∂l(ξ)/∂ξT } are equal to the the information matrix

if the model under study is correctly specified (ξ is the vector of model parameters).

[7], [8], [10], [16, 17], and among authors studied this information test and applied

it to econometrics. [12] extend the [26] to partial likelihood set-up and use it to test

goodness-of-fit for Cox models. [27] extends to semiparametric empirical likelihood

case and uses it to assess the model fit for retrospective binary logistic regression

models. Here we generalize [27] goodness-of-fit test to retrospective PLR models.

Recall that θi = (αi, β
T
i )

T , θ = (θT1 , · · · , θTI−1)
T , γ = (γ1, γ2, · · · , γI−1)

T . For i =

1, 2, · · · , I, and j = 1, 2, · · · , ni, the log-likelihood of α and β based on retrospective

model (11) at point Xij is defined to be

lij(γ, θ) = log{1 +
I−1∑
m=1

ρm exp[γm + gm(Xij , θ)]}+ I[i<I]

[
γi + gi(Xij , θ)

]
. (28)

Then the semiparametric profile log-likelihood can be written as

l(γ, θ) = n log nI −
I∑

i=1

ni∑
j=1

lij(γ, θ).

For the notational simplicity, denote ϕ = (γτ , θτ ) and ϕ0 = (γτ0 , θ
τ
0). Furthermore,

denote

Un(ϕ0) = Un(γ0, θ0) =
1

n

∂2l(ϕ0)

∂ϕϕT
=

1

n

 ∂2l(γ0, θ0)
∂γ∂γτ

∂2l(γ0, θ0)
∂γ∂θτ

∂2l(γ0, θ0)
∂θ∂γτ

∂2l(γ0, θ0)
∂θ∂θτ

 (29)

and

Vn(ϕ0) = Vn(γ0, θ0) =
1

n

I∑
i=1

ni∑
j=1

{∂lij(ϕ0)

∂ϕ
}{∂lij(ϕ0)

∂ϕτ
}
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=
1

n

I∑
i=1

ni∑
j=1

 ∂lij(γ0, θ0)
∂γ

∂lij(γ0, θ0)
∂γτ

∂lij(γ0, θ0)
∂γ

∂lij(γ0, θ0)
∂θτ

∂lij(γ0, θ0)
∂θ

∂lij(γ0, θ0)
∂γτ

∂lij(γ0, θ0)
∂θ

∂lij(γ0, θ0)
∂θτ

 , (30)

where The cell elements of (29) and (30) are specified in the proof of the following

information matrix equality is given in the appendix.

Theorem 4.1. Under model retrospective polychotomous logistic regression model

(11), we have

E
[
Un(γ0, θ0)

]
= −

 S11 ST
21

ST
21 S33

 = −S (31)

and

E
[
Vn(γ0, θ0)

]
=

 S11 ST
21

ST
21 S33

 = S (32)

Consequently, the following Information Matrix Equality holds.

E
(
Un(γ0, θ0) + Vn(γ0, θ0)

)
= 0 (33)

where Un(γ0, θ0) and Vn(γ0, θ0) are score derivative matrix and squared score matrix

respectfully.

Since the matrix Un(γ0, θ0)+Vn(γ0, θ0) is unobservable, we can estimate it by substi-

tuting values of the parameters γ0 and θ0 with the consistent semiparametric estimates

γ̃ and θ̃. It is expected that the matrix is close to a zero matrix if our model fits the

data well. By using this fact, we propose a Wald-type test statistic to assess the global

fit of the adjacent category logit model based on case-control data based on the differ-

ence between the estimated consistent semiparametric score derivative matrix Un(γ̃, θ̃)

and the squared score matrix Vn(γ̃, θ̃) to assess the fit of the model in the next section.

5. An Information Matrix χ2 Test Procedure

We will follow the approach of White (1982) and Zhang (2001) to construct the test

statistic. Since the matrix Un(γ̃, θ̃) + Vn(γ̃, θ̃) is symmetric, we now construct a test

statistic based on the lower triangular elements of the matrix. Let q be the number of

parameters in the retrospective polychotomous logistic regression model. Denote ϕ =
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(ϕ1, ϕ2, · · · , ϕq−1, ϕq) = (γ1, · · · , γI , θT1 , θT2 , · · · , θTI )T where θi is specified in remark 2.

Furthermore, let k = v + (u− 1)q)− u(u− 1)/2, 1 ≤ u ≤ v ≤ q. It is seen that k and

the ordered pair (u, v) have one-to-one correspondence. Define

dk(ϕ : Xij) = duv(ϕ : Xij) =
∂2lij(ϕ : Xij)

∂ϕu∂ϕv
− ∂lij(ϕ : Xij)

∂ϕu

∂lij(ϕ : Xij)

∂ϕv
(34)

Dkn(ϕ : Xij) =
1

n

I∑
i=0

ni∑
j=1

duv(ϕ,Xij), where k = v + (u− 1)q)− u(u− 1)/2.

The explicit expression of dk(ϕ : Xij) can be found in the proof of the information ma-

trix equality theorem in the appendix. Using the one-to-one correspondence between

k = v + (u − 1)q) − u(u − 1)/2, 1 ≤ u ≤ v ≤ q and the ordered pair u, v, we define

the s = q(q + 1)/2 dimensional random vector based on the elements in the upper

triangular portion (including the main diagonal elements) of Un(ϕ) + Vn(ϕ) as follows

Dn(ϕ : Xij) =
(
D1n(ϕ : Xij), D2n(ϕ : Xij), · · · , Dsn(ϕ : Xij)

)
, D̃n(ϕ) = Dn(ϕ̃ : Xij)

(35)

where ϕ̃ is the semiparametric empirical likelihood estimate derived from (18) and

(19). Since the log likelihood function is third order differentiable, the partial deriva-

tives and the expected matrix exist. For notational convenience, we suppress the no-

tation in (28) as l0(ϕ : Xij) = lij(γ, θ). We define,

∇Dnk(α, β) =
∂Dnk(α, β)

∂ϕ
=

(
∂Dkn(ϕ : Xij)

∂ϕ1
, · · · , ∂Dkn(ϕ : Xij)

∂ϕq

)
(36)

where, for l = 1, 2, · · · , q,

∂Dkn(ϕ : Xij)

∂ϕl
=

1

n

I∑
i=1

ni∑
j=1

(
∂3l0(ϕ,Xij)

∂ϕl∂ϕu∂ϕv
− ∂2l0(ϕ,Xij)

∂ϕl∂ϕu

∂l0(ϕ,Xij)

∂ϕv
− ∂l0(ϕ,Xij)

∂ϕu

∂2l0(ϕ,Xij)

∂ϕl∂ϕv

)

The above first, second, and third order (partial) derivatives of l0(ϕ : Xij) can be

explicitly expressed in terms of data values and the values of parameters. Define

b = E

(
∂Dn(ϕ,Xij)

∂ϕ

)
= (bkl) for 1 ≤ k ≤ s, 1 ≤ l ≤ q. (37)
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Clearly, ∇D(ϕ) is an s× q matrix with cell elements specified by

bkl =
1

1 + ρ

∫ I∑
i=1

(
∂3l0(ϕ, x)

∂ϕl∂ϕu∂ϕv
− ∂2l0(ϕ, x)

∂ϕl∂ϕu

∂l0(ϕ, x)

∂ϕv
− ∂l0(ϕ, x)

∂ϕu

∂2l0(ϕ, x)

∂ϕl∂ϕv

)
dFi(x)x.

We need a few more notations before presenting the main result. Denote

Ψ1 = (φkk′), Λ = (πkw), for 1 ≤ k, k′ ≤ s, 1 ≤ w ≤ q

be s × s and s × q matrices with, as usual, k = v + (u − 1)q − u(u − 1)/2, k′ =

v′ + (u′ − 1)q − u′(u′ − 1)/2 and

φkk′ =

I∑
i=1

(
ρi

1 + ρ

)2 ∫
duv(ϕ : x)du′v′(ϕ : x)dFi(x)

+
∑

1≤i ̸=i′≤I

ρiρi′

(1 + ρ)2

∫
duv(ϕ0 : x)dGi(x)

∫
du′v′(ϕ0 : x)dFi′(x)

πkw =

I∑
i=1

(
ρi

1 + ρ

)2 ∫
ρiduv(ϕ : x)

∂l(ϕ : x)

∂ϕw
dFi(x)

+
∑

1≤i ̸=i′≤I

ρiρi′

(1 + ρ)2

∫
duv(ϕ0 : x)dGi(x)

∫
∂l(ϕ0 : x))

∂ϕw
dFi′(x)

Define

Σ = Ψ1 + bT [S−1 − (1 + ρ)Ω]b− 2ΛS−1b

Based on the above notations, we state the main result as follows

Theorem 5.1. Assume the retrospective polychotomous logistic regression model (11)

and ϕ̃ = (γ̃, θ̃) is the semiparametric likelihood estimate of ϕ = (γ, θ). We have

√
nDn(ϕ̃) =

√
n

[
Dn(ϕ0) +

1

n
bTS−1∂l(ϕ0)

∂ϕ

]
+ op(1) → Ns(0,Σ). (38)

Furthermore, if Σ−1 exists, we have
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n
[
Dn(ϕ̃)

]T
Σ−1(ϕ̃)Dn(ϕ̃) → χ2

s (39)

Proof See the appendix.

The one dimensional statistic n
[
Dn(ϕ̃)

]T
Σ−1(ϕ̃)Dn(ϕ̃) measures the discrepancy be-

tween the true model (11) and any incorrect model. The level of significance can be

evaluated through the asymptotic distribution.

Since the covariance matrix Σ is unobservable, we can use the sample version Σ̃ by

substituting the true value of parameter (ϕ) with the semiparametric estimate (ϕ̃), in

the calculation of the covariance matrix, we need the cumulative distribution functions

Fi(x), i = 1, 2, · · · , I − 1. We can replace Fi(x) by our semiparametric estimators

specified in (21). If we replace the consistent semiparametric estimate Σ̃ of Σ and

assume further that the inverse of Σ̃(ϕ̃) exists, then

[
D̃n(ϕ̃)

]T
Σ̃−1(ϕ̃)D̃n(α̃, β̃) → χ2

s

Remark: If some of the elements in the matrix Q̃n are linear combinations of the

others, then the estimated covariance matrix would be singular. In this case, we replace

Σ̃−1 with the generalized inverse matrix Σ̃+1. So we will lose some degrees of freedom.

The asymptotic distribution of Dn(ϕ̃) is still a χ2
r distribution with degrees of freedom

r ≤ s.

6. A Case Study and Numerical Results

In this section, we study the power of the proposed information matrix test under a

local alternative. Consider the following model alternative to PLR (11) XI1, · · · , XInI

i.i.d.∼ fI(x),

Xi1, · · · , Xini

i.i.d.∼ exp
(
γi + gi(x, θ) + κi(ξ, x)

)
· fI(x), for i = 1, · · · , I − 1,

(40)

where κi(ξ, x) is a pre-specified function. Furthermore, assume that there exists a

unique ξ0 such that κi(ξ0, x) = 0. Therefore, testing that H0 : PLR (11) is valid is

equivalent to testing H0 : ξ = ξ0 under model (40).
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As a special case, we choose the null model as the generalized logit model
XI1, · · · , X1n1

i.i.d.∼ f1(x) = exp(α1 + β1x),

XI1, · · · , X2n2

i.i.d.∼ f2(x) = exp(α3 + β3x),

Xi1, · · · , Xini

i.i.d.∼ f3(x)

(41)

Consider the following alternative to (41)
XI1, · · · , X1n1

i.i.d.∼ fa
1 (x) = exp(α1 + β1x+ γx2),

XI1, · · · , X2n2

i.i.d.∼ f2(x) = exp(α3 + β3x),

Xi1, · · · , Xini

i.i.d.∼ f3(x)

(42)

Similar to the approach used in [28] to get the theoretical procedure in assessing the

asymptotic power at the local alternative. Since multiple approximations have been

used in this large sample test, we will not focus on the power. Instead, we present

the following numerical example to illustrate the implementation of the proposed

goodness-of-fit test.

Example Table 5.2 in [15] contains data concerning the degree of pneumoconiosis in

coalface workers as a function of exposure x measured in years. [15] analyzed this data

set by employing the proportional odds model and the continuation-ratio logit model.

Let X denote ”Period spent (years)” and Y represent ”prevalence of pneumoconiosis”

in which Y = 0, 1, and 2 stand for three categories: Normal, Mild pneumoconiosis, and

Severe pneumoconiosis. Since the sample data (Xi, Yi), i = 1, · · · , 371, can be thought

of as being drawn independently and identically from the joint distribution of (X, Y).

We fit model (41) to this data and obtain semiparametric empirical likelihood point

estimates α̃1, β̃1, α̃2, β̃2) = (2) = (−2.2628, 0.0836,−3.1776, 0.1093). The information

matrix χ2 statistic is 7.988 with 10 degrees of freedom. The corresponding observed

p-value is 0.37 indicating the goodness-of-fit for the model. This also agrees with the

result obtained by [28] via the Kolmogorov-Smirnov test. Since model (41) fits the data

appropriately, all empirical likelihood estimates of the parameters are statistically valid

for making inferences.
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7. Summary

In this paper, an information matrix goodness-of-fit test has been proposed for testing

the adequacy of the retrospective polychotomous logistic regression models. Since the

proposed test statistic has a χ2 distribution under the null hypothesis that the retro-

spective polyonymous logistic regression is correctly specified, the bootstrap procedure

is not needed to find the p-value in order to draw conclusions.

This procedure is, in fact, a nonparametric method. It is also a computationally

intensive method and involves the inversion of a high-dimensional matrix.

Finally, the method proposed in this paper can be applied directly to all semipara-

metric models with the general form specified in (11).

8. Appendix - Proofs of Theorems

Proof Theorem 2. (Information Matrix Equality). We still use the notation defined

in (22), (23) and (24). First of all, we calculate expectations of these second order

derivatives of the semiparametric log-likelihood. For u, v = 1, 2, · · · , I − 1,

E
( 1
n

∂2l(γ0, θ0)

∂γu∂γv

)
= E

( I∑
i=1

ni∑
j=1

eu(Xij)ev(Xij)[
1 +

∑I−1
i=1 ei(Xij)

]2) =
1

1 + ρ

∫
P (x)eu(x)ev(x)dFI(x)

(1)

if u ̸= v. For u = v, we have

E
( 1
n

∂2l(γ0, θ0)

∂γ2u

)
= − 1

1 + ρ

∫
P (x)eu(x)

I−1∑
u̸=v,v=1

ev(x)dFI(x), (2)

E
( 1
n

∂2l(γ0, θ0)

∂γu∂θτ

)
= −E

{ 1

n

n∑
s=1

eu(Ts)g
θ
u(Ts)

1 +
∑I−1

m=1 eu(Ts)
− 1

n

n∑
s=1

eu(Ts)
∑I−1

m=1 em(Ts)g
θ
m(Ts)

{1 +
∑I−1

m=1 em(Ts)}2
}

= − 1

1 + ρ

∫
eu(x)

(
gθu(x)−

I−1∑
m=1

P (x)em(x)gθm(x)

)
dFI(x), (3)

and E

(
1

n

∂2l(γ0, θ0)

∂θ∂θτ

)
=

1

n
E

 I∑
i=1

ni∑
j=1

gθθ
T

i (Xij)−
n∑

s=1

∑I−1
m=1 em(Ts)g

θ
m(Ts)g

θT

m (Ts)

1 +
∑I−1

m=1 em(Ts)


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+
1

n
E

(
n∑

s=1

∑I−1
m=1 em(Ts)g

θθT

m (Ts)

1 +
∑I−1

m=1 em(Ts)
+

n∑
s=1

∑I−1
m=1 em(Ts)g

θ
m(Ts)

1 +
∑I−1

m=1 em(Ts)
×
∑I−1

m=1 em(Ts)g
θT

m (Ts)

1 +
∑I−1

m=1 em(Ts)

)

= − 1

1 + ρ

∫ ( I−1∑
m=1

em(x)gθm(x)gθ
T

m (x)−
[
∑I−1

m=1 em(x)gθm(x)][
∑I−1

m=1 em(x)gθ
T

m (x)]

1 +
∑I−1

m=1 em(x)

)
dFI(x).

(4)

From equations (1), (2), (3)and (4) we obtain

E
[
Un(γ0, θ0)

]
= −

 S1 S2

ST
2 S3

 = −S. (5)

Next, we find the expectation of the squared score matrix. Observe that, for u =

1, 2, · · · , I − 1,

∂lij(γ0, θ))

∂γu
=

eu(Xij)

1 +
∑I−1

m=1 em(Xij)
− I[i<I]I[i=u].

where I[·] is the indicator function. Taking the product of the above derivatives, we

have

∂lij(γ0, θ0)

∂γu

∂lij(γ0, θ0)

∂γv
=

eu(Xij)ev(Xij)[
1 +

∑I−1
m=1 em(Xij)

]2 −
eu(Xij)I[i<I]I[i=v]

1 +
∑I−1

m=1 em(Xij)

−
ev(Xij)I[i<I]I[i=u]

1 +
∑I−1

m=1 em(Xij)
+ I[i<I]I[i=v]I[i=u].

Note that if u ̸= v, then I[i<I]I[i=v]I[i=u] = 0 and

E
( 1
n

I∑
i=1

ni∑
j=1

ev(Xij)I[i<I]I[i=u]

1 +
∑I−1

m=1 em(Xij)

)
=

1

1 + ρ

∫
eu(x)ev(x)

1 +
∑I−1

m=1 em(x)
dFI(x). (6)

After some algebra, we have

E
( 1
n

I−1∑
i=1

ni∑
j=1

∂lij(γ0, θ0)

∂γu

∂lij(γ), θ0)

∂γv

)
= − 1

1 + ρ

∫
eu(x)ev(x)

1 +
∑I−1

m=1 em(x)
dFI(x). (7)

If u = v, then E
(
I[i<I]I[i=v]I[i=u]

)
=
∫
eu(: x)dFI(x), along with (6), we have

E
( 1
n

[∂lij(γ0, θ0)
∂γu

]2)
=

1

1 + ρ

∫
eu(x)

∑I−1
m=1,m ̸=u em(x)

1 +
∑I−1

m=1 em(x)
dFI(x). (8)
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Since (∂lij(γ,θ0)
∂γ

∂lij(γ,θ0)

∂θτ

)τ
=

∂lij(γ,θ0)

∂θ

∂lij(γ,θ0)

∂γτ
.

We only need to calculate the expectation of the matrix on the the right side of the

above equation. The explicit expression of the the right-hand side of the above equation

is, for u = 1, 2, · · · , I − 1,

∂lij(γ0, θ0)

∂θ

∂lij(γ0, θ0)

∂γu
=

eu(Xij)
(∑I−1

m−1 em(Xij)g
θ
m(Xij)

)[
1 +

∑I−1
m=1 em(: Xij)

]2

−
∑I−1

m−1 em(Xij)g
θ
m(Xij)I[i=u]

1 +
∑I−1

m=1 em(Xij)
− eu(Xij)g

θ
i (Xij)

1 +
∑I−1

m=1 em(Xij)
+ gθi (Xij)I[i=u].

With the above expression we obtain

E
( 1
n

∂lij(γ,θ0)

∂θ

∂lij(γ,θ0)

∂γT

)
=

1

1 + ρ

∫
eu(x)

(
gθm(x)−

∑I−1
m−1 em(x)gθm(x)

1 +
∑I−1

m=1 em(x)

)
dFI(x). (9)

Finally, Notice that

∂lij(γ, θ)

∂θ

∂lij(γ, θ)

∂θτ
=

[
∑I−1

m=1 em(x)gθm(Xij)][
∑I−1

m=1 em(x)gθ
T

m (Xij)]

[1 +
∑I−1

m=1 em(x)]2
+

ni∑
j=1

gθi (Xij)g
θT

i (Xij)I[i<I]

−
[
∑I−1

m=1 em(x)gθm(Xij)]g
θT

i (Xij)I[i<I]

1 +
∑I−1

m=1 em(x)
−

[
∑I−1

m=1 em(x)gθ
T

m (Xij)]g
θ
i (Xij)I[i<I]

1 +
∑I−1

m=1 em(x)

Therefore,

E
( 1
n

∂lij(γ, θ)

∂θ

∂lij(γ, θ)

∂θτ

)

=
1

1 + ρ

∫ ( I−1∑
m=1

em(x)gθm(x)gθ
T

m −
∑I−1

m=1 em(x)gθm(x)
∑I−1

m=1 em(x)gθm(x)

1 +
∑I−1

m=1 em(x)

)
dFI(x).

(10)

Combine the results in equations (7), (8), (9) and (10), we have

E
(
Vn(ϕ)

)
= E

 1

n

I∑
i=1

ni∑
j=1

{∂lij(ϕ0)

∂ϕ
}{∂lij(ϕ0)

∂ϕτ
}

 =

 S1 S2

Sτ
2 S3

 = S. (11)
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Combining Equations (5) and (11) we get E
(
Vn(ϕ) + Un(ϕ)

)
= 0 which proves the

theorem.

Proof Theorem 3. Assume that the polychotomous logistic regression model (11) holds

under case-control data. We have proved that ϕ̃ = (γ̃, θ̃) is the consistent empirical

likelihood estimate of ϕ = (γ, θ). Let ϕ0 = (ϕ10, ϕ20, · · · , ϕq0) be the true value of the

vector of parameters ϕ. Applying the weak law of large numbers, we have b = ∂Dn(ϕ0 :

Xij)/∂ϕ + o
P
(1). Using the first order Taylor expansion D(ϕ̃) at a neighborhood of

the true value of the parameter ϕ0, we have

D(ϕ̃ : Xij) = D(ϕ0 : Xij) +
∂D(ϕ0 : Xij)

∂ϕ
(ϕ̃− ϕ0) + o

P
(||ϕ̃− ϕ0||) (12)

where ||ϕ̃− ϕ0|| = O
P
(n−1/2) (by Theorem 1). Hence

√
nD(ϕ̃ : Xij) =

√
n

(
D(ϕ0 : Xij) +

1

n
bS−1∂lϕ0 : Xij

∂ϕ

)
+ o

P
(1) (13)

From Theorems 1 and 2, we can see that

E

(
D(ϕ0 : Xij) +

1

n
bS−1∂l(ϕ0 : Xij)

∂ϕ

)
= E (D(ϕ0 : Xij))+

1

n
bS−1E

(
∂l(ϕ0 : Xij)

∂ϕ

)
= 0

and

var

[
D(ϕ0 : Xij) +

1

n
bS−1∂l(ϕ0 : Xij)

∂ϕ

]
= var [D(ϕ0 : Xij)]+var

[
1

n
bS−1∂l(ϕ0 : Xij)

∂ϕ

]

+2E [D(ϕ0 : Xij)]

[
1

n

∂l(ϕ0 : Xij)

∂ϕT
S−1bT

]
(14)

Let

Ψ1 = var [D(ϕ0 : Xij)] , Λ = E [D(ϕ0 : Xij)]

[
1

n

∂l(ϕ0 : Xij)

∂ϕT

]
Note that

var

[
1

n
bS−1∂l(ϕ0 : Xij)

∂ϕ

]
= var

[
b(ϕ̃− ϕ0)

]
= b[S−1 − (1 + ρ)Ω]bT

Next we calculate the elements in Ψ1 = (φ1
kk′) where 1 ≤ k, k′ ≤ s, k = v+ (u− 1)q−

(u−1)u/2, k′ = v′+(u′−1)q−(u′−1)u′/2 and s = q(q+1)/2. Note that, for i ̸= i′, Xij
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and Xi′j′ are jointly independent; Xij and Xij′ are identical and independent. Using

these facts, we have

φkk′ = var
(
Dnk(ϕ0 : Xij), Dnk′(ϕ0:Xij)

)
= E


 1

n

I∑
i=1

ni∑
j=1

duv(ϕ0 : Xij)

 1

n

I∑
i=1

ni∑
j=1

du′v′(ϕ0 : Xij)



=
1

n2
E

 I∑
i=1

 ni∑
j=1

duv(ϕ0 : Xij)

n1∑
j=1

du′v′(ϕ0 : Xij)

+
∑

1≤i ̸=i′≤I

 ni∑
j=1

duv(ϕ0 : Xij)

ni′∑
j=1

du′v′(ϕ0 : Xi′j)



=

I∑
i=1

(
ρi

1 + ρ

)2 ∫
duv(ϕ0 : x)du′v′(ϕ0 : x)dFi(x)

+

I∑
1≤i ̸=i′≤I

ρiρi′

(1 + ρ)2

∫
duv(ϕ0 : x)dGi(x)

∫
du′v′(ϕ0 : x)dFi′(x)

(15)

Similarly, we can calculate the elements in Λ = (πkw) for 1 ≤ k = v+(u− 1)q−u(u−

1)/2 ≤ s and 1 ≤ w ≤ q as follows

πkw =
1

n2
E

 I∑
i=1

ni∑
j=1

duv(ϕ0 : Xij)

I∑
i=1

ni∑
j=1

∂l(ϕ0 : Xij)

∂w



=
1

n2
E

 I∑
i=1

 ni∑
j=1

duv(ϕ0, Xij)

ni∑
j=1

∂l(ϕ0 : Xij)

∂ϕw

+
∑

1≤i ̸=i′≤I

 ni∑
j=1

duv(ϕ0 : Xij)

ni′∑
j=1

∂l(ϕ0 : Xi′j)

∂ϕw



=

I∑
i=1

(
ρi

1 + ρ

)2 ∫
duv(ϕ0 : x)

∂l(ϕ0 : x)

∂ϕw
dFi(x)

+

I∑
1≤i ̸=i′≤I

ρiρi′

(1 + ρ)2

∫
duv(ϕ0 : x)dGi(x)

∫
∂l(ϕ0 : x)

∂ϕw
dFi′(x)

(16)

Therefore,

Σ ≡ var

[
D(ϕ0 : Xij) +

1

n
bS−1∂l(ϕ0 : Xij)

∂ϕ

]
= Ψ1+b[S−1−(1+ρ)Ω+2ΛS−1]bT (17)
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Since ∂l(α0, β0)/∂ϕ is a multivariate normal random variable, using multivariate cen-

tral limit theorem and Slutsky’s theorem, we have

√
nD(ϕ̃ : Xij) =

√
n

[
D(ϕ0) +

1

n
bS−1∂l(ϕ0 : Xij)

∂ϕ

]
+ op(1) → Ns(0,Σ). (18)

As a consequence, if Σ−1 exists,

nDT (ϕ̃)Σ−1D(ϕ̃) →d χ2
s

which completes the proof of theorem 3.
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