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ABSTRACT

We extend the 2-parameter Weibull to the generalized gamma distribution by
adding a new partial parameter. The new shape parameter can be used to easily
generate generalized gamma distributions with different shapes of the density func-
tion, hazard rate, and mean residual lifetimes that are useful in simulating various
business processes such as manufacturing processes, and reliability systems. We de-
rived some theoretical results and created visual presentations to show the influence
(or effect) of this new shape parameter as well. A new Monte Carlo simulation
based on the new parameter was proposed to assess the discrepancy between the
generalized gamma and its subfamilies. The power analysis of the proposed test was
evaluated via simulation studies. We also present some numerical examples.
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divergence; business and statistical simulations; Monte Carlo test.
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1. Introduction and Related Work

The standard two-parameter Weibull distribution has the following density

f(x) = ab−axa−1 exp[−(x/b)a] (1)

where a, b, x > 0. a is the shape parameter and b is the scale parameter. The Weibull
distribution and its variants have been extensively studied and widely applied in qual-
ity engineering, reliability analysis, and survival modeling (in clinical studies). See
monographs of Dodson [11], McCool [26], Murthy et al [32], and Rine [41].

In reliability and clinical study, the hazard rates can have any pattern such as the
work of Glaser [14] for bathtub hazard (BT), Langlands et al [22] for the upside-
down bathtub (UBT) hazard, Bennette [7] and Efron [12] and Gupta and Viles [18]
roller-coaster hazard. However, the two-parameter Weibull can take only a monotonic
failure rate across the entire lifetime limiting its applications to real-world problems.
To obtain more flexible hazard rates, researchers have developed different ways to
extend the Weibull to larger families. Some of the earlier work was due to Mudholkar
et al [28–30]. In the past decades, many such generalized Weibull distributions were
proposed and studied. See, for example, Lai et al [24], Nadarajah and Kotz [33],
Bebbington [6], Carrasco et al [8], Pham and Lai [39], Silva et. al [42], Singla [43],
Ortega et al [36], Xu and Peng [47] and Gauss et al [13]. In his monograph, Lai
[23] systematically introduced various generalized Weibull distributions. Most recently,
Almalki and Nadarajah [3] gave an up-to-date and comprehensive review of numerous
extended Weibull distributions.

In this paper, we propose a new extension of the Weibull distribution by including
an additive gamma shape parameter in the two-parameter Weibull density to obtain
the well-known generalized gamma distribution (GG) after reparametrization. The
generalized gamma was initially proposed by Stacy [44] as an extension of the gamma
distribution. Since the GG model has several well-known distributions as special cases
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and has flexible shapes of density and hazard rate, it has received wide attention
from researchers and practitioners in both statistics and other relevant areas. See, for
example, the work of Stacy and Mihram [45], Harter [19], Lawless [25], Diebold and
Rudebusch [10], Pham and Almhana [38], Allenby et al. [2], Dadpay et al. [9], Gomes
et al. [15], Kaniovski and Peneder [20], Noufaily and Jones [34, 35] and Balakrishnan
and Pal [5].

The focus of this paper is two-fold. The first objective is to study the geometric
properties of the new parameter to see how it affects the shape of density, hazard rate,
and mean residual lifetime functions. These properties are practically important in
simulating various business processes (usually in the stage of the ”what-if analysis”
stage) for better business planning. The second objective is to develop a Monte Carlo
simulation-based goodness-of-fit test to assess the departure from its subfamilies. It
will be used together with other large sample tests in the data analysis to avoid
misspecification (under or overfitting the data to a member of this family).

The rest of this paper is organized as follows. In Section 2, we outline the new
formulation of the GG model from the Weibull distribution. Some characterizations
on the shape of density, failure rate, and mean residual lifetime functions are presented
in Sections 3 and 4. The information-theoretic analysis on the discrepancy between
the generalized gamma and the Weibull using Kullback-Leibler divergence (KLD) is
presented in Section 5. Maximum likelihood estimation of the parameter is developed
in Section 6. In Section 7, we present a novel Monte Carlo simulation-based goodness-
of-fit test. A simulation study on the power of the novel Monte Carlo test is given
in Section 8. Several numerical examples from the generalized family with different
applications are discussed in Section 9. Some discussions are given in the concluding
Section 10. Finally, some proofs are given in the appendix.

2. Extending Weibull to Generalized Gamma

We add a gamma shape parameter c and an adjusted normalizing coefficient to the
standard two-parameter Weibull density to get the following new formulation of the
generalized gamma density function

g(x) =
ab−a−cxa+c−1 exp[−(x/b)a]

Γ[(a+ c)/a]
(2)

where c is the added new partial shape parameter that satisfies c + a > 0. As usual,
a > 0 and b > 0 are shape and scale parameters respectively. a is the shape parameter
that is analogous to the shape parameter in the regular Weibull distribution. If a = 1,
the GG is reduced to the regular gamma distribution and c + 1 is the gamma shape
parameter. In other words, c controls the shape of the reduced gamma distribution. For
convenience, we will hereafter call a and c the Weibull and gamma shape parameters
respectively.

2.1. Visual Inspection of Shape Parameters

The shape of a density curve plays an important role in real-world applications in
process capability index analysis. The above newly formulated GG density function
has two shape parameters a and c. As a visual exploration, we look at how the two
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shape parameters behave with the fixed scale parameter b = 1. We will do more
analysis on the shape of the above density in the next section.
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Figure 1. The solid curve in each panel represents the standard two-parameter Weibull density. The scale
parameter is chosen to be 1 in all panels. The values of the gamma shape parameter c in the extended Weibull

distributions are all positive.

We can see from each plot in Figure 1 that, for the fixed value of a, the right tail
of the density curves becomes heavier as the gamma shape parameter c gets bigger.
However, for a fixed value of the shape parameter c, we see across the plots and find
that the right tail of the density curve gets lighter as the shape parameter a increases.

Note that all values of c in Figure 1 are non-negative. In Figure 2, we choose different
sequences of negative values for the new partial shape parameter c and a sequence of
positive values of shape parameter a. We observe the sample pattern as we saw in
Figure 1.

The exploratory visual analysis indicates that the two shape parameters behave in
opposite ways. The bigger the value of the partial shape parameter c, the longer the
right tail of the density for the fixed shape parameter a. However, for the fixed c, the
bigger the value of a, the longer the left tail of the density.

2.2. Quantile Function and Moments

The cumulative probability distribution of the newly formulated GG (we will simply
call GG hereafter) is given by

FGG(x) =

∫ x

0

ab−a−cta+c−1 exp[−(t/b)a]

Γ[(a+ c)/a]
dt =

γ [(a+ c)/a, (x/b)a]

Γ[(a+ c)/a]
(3)
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Figure 2. The solid curve in each panel represents the standard two-parameter Weibull density. The scale

parameter is chosen to be 1 in all panels. The values of the partial shape parameter c in the extended Weibull
distributions are all negative.

where

γ [(a+ c)/a, (x/b)a] =

∫ (x/b)a

0
yc/a exp(−y)dy (4)

is the lower incomplete gamma function.
Note that we can re-express the CDF of the generalized gamma distribution as

FGG(x) =
γ [(a+ c)/a, (x/b)a]

Γ[(a+ c)/a]
=

∫ (x/b)a

0

y(a+c)/a−1 exp(−y)

Γ[(a+ c)/a]
dy = G0 ([x/b]

a) , (5)

where G0(y) is a special Gamma distribution with shape parameter (a+c)/a and scale
parameter to be unity. The density of this special gamma distribution is given by

g0(y) =
y[(a+c)/a]−1 exp(−y)

Γ[(a+ c)/a]
, y > 0. (6)

Using the inverse of the composite function, we can find the quantile function

F−1
GG(q : a, b, c) = b

[
G−1

0 (q)
]1/a

(7)

where G−1
0 (q) is the quantile function of G0(x) with shape (a+ c)/a and unity scale.

We will use the above relationship to generate random numbers for the GG using
the existing computer programs for regular gamma CDF in the simulation study. To
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be more specific, if U is a uniform random variable on (0, 1), then X = b
[
G−1

0 (U)
]1/a

has the distribution FGG(x).
We see from subsection 2.1 that the shape of the GG density is very flexible, we

can use the above quantile function to solve real-world application problems such as
capability analysis of skew processes that involve quantiles.

The k-th moment is given by

µk = E[Xk] =

∫ ∞

0

xkab−a−cxa+c−1 exp[−(x/b)a]

Γ[(a+ c)/a]
dx =

bkΓ[(a+ c+ k)/a]

Γ[(a+ c)/a]
. (8)

Some moment properties will be used in both characterizations and inference in the
subsequent sections.

3. Characterizations on Density Shape

The shape of the density function plays an important role in many practical applica-
tions such as process capability analysis (in environmental process control and man-
ufacturing/production process monitoring) in which capability measures are custom-
arily defined based on the shape of the probability density function of the underlying
process.

3.1. General Moments of Generalized Gamma

We first present several functions defined based on the gamma function. The digamma
function (also called Euler Ψ function) is defined to be

Ψ(x) =
d ln Γ(x)

dx
=

Γ′(x)

Γ(x)
(9)

where

Γ(x) =

∫ ∞

0
tx−1e−tdt.

There are several different representations of the digamma function. We use the fol-
lowing integral representation given in Proposition 2.12 of Medina and Moll [27].

Ψ(α) =

∫ ∞

0

[
e−x

x
− e−αx

1− e−x

]
dx.

The high-order derivatives of the digamma function are called polygamma functions.
These special functions are useful in characterizing the behavior of the partial parame-
ter c in this paper. The integral and series representations of the polyganma functions
are given by

Ψn(α) =
dnΨ(α)

dαn
=

dn+1 ln Γ(α)

dαn+1
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= (−1)n+1

∫ ∞

0

xne−αx

1− e−x
dx = (−1)n+1n!

∞∑
k=0

1

(k + α)n+1
(10)

for a > 0 and any number n. See eq. 5.5 of Alzer [4]. Γ1(α) and Ψ2(α) are called
trigamma and tetragamma functions respectively.
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Figure 3. Left panel : Bounds of digamma function. Since both bounding functions are monotonically in-

creasing and have the same range from negative infinity to positive infinity, the digamma function is also
monotonically increasing from negative infinity to positive infinity. Right Panel : The trigamma is a decreasing
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Lemma 3.1. Assume x > 0, following monotonic properties of polygamma functions
hold.
(a). Digamma Ψ(α) is increasing in α.
(b). Trigamma Ψ1(x) > 0 and is decreasing.
(c). Tetragamma Ψ2(x) < 0 and is increasing.

Proof. (b) and (c) are obvious from the series representation. The proof of (a) is
trivial since in trigamma function Ψ1(x) is positive.

The next result describes the relationship between the digamma and the natural
logarithmic function. This also implies that the range of the digamma function is
(−∞,∞).

Lemma 3.2. Bounds of polygamma functions. For all positive x, we have
(a). ln(x)− 1/x < Ψ(x) < ln(x+ 1)− 1/x.

(b). (n−1)!
xn + n!

2xn+1 < (−1)n+1Ψn(x) <
(n−1)!
xn + n!

xn+1 .

Proof. (a) see Corollary 2.3 of Muqattash and Yahdi [31].
(b) see Lemma 1 of Guo and Feng [17].

The following integrals due to Gradshteyn and Ryzhik [16] are related to the
digamma function. These integrals will be used to prove results regarding some general
moments.

Lemma 3.3. For positive ν and µ , we have the following integrals

(a).

∫ ∞

0
xν−1e−µx ln(x)dx = µ−νΓ(ν) [Ψ(ν)− ln(µ)]
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(b).

∫ ∞

0
xν−1e−µx [ln(x)]2 dx = µ−νΓ(ν)

{
[Ψ(ν)− ln(µ)]2 +Ψ1(ν)

}
where Ψ(z) and Ψ1(z) are digamma function and trigamma function respectively.

The following general moments based on the generalized gamma (GG) models will
also be used in the subsequent discussions.

Lemma 3.4. Let X be the shape-modified Weibull distribution (GG) with parameters
(a, b, c) given before. The expectation of (X/b)k ln(X/b) and (X/b)k ln2(X/b) are given
respectively by

(a). EGG

[
(X/b)k ln(X/b)

]
= Γ[(p+ k)/a]Ψ[(p+ k)/a]/ {aΓ(p/a)}

(b). EGG

[
(X/b)k [ln(X/b)]2

]
=

Γ[(p+ k)/a]
{
Ψ2[(p+ k)/a] + Ψ1[(p+ k)/a]

}
a2Γ(p/a)

where k is a positive real number and p = a+ c.

Proof. See the proof in the appendix.

3.2. Analysis of Density Shape

Before presenting the main result on the shape of the density curve, we prove the
following lemma describing the mode of the GG distribution.

Lemma 3.5. Assuming the parametrization of the GG model (2), we have the follow-
ing results
(a). If a+ c ≤ 1, the GG has no mode.
(b). If a+ c > 1, the GG has a single mode.

Proof. Taking the derivative of the logarithmic density function concerning x and
setting it to zero, we have

d

dx
ln g(x) =

a+ c− 1

x
− a

(x
b

)a−1
=

(a+ c− 1)ba−1 − axa

xba−1
= 0

If a+ c < 1, then d ln g(x)/dx < 0 meaning that the GG density function is monoton-
ically decreasing. This implies that the GG distribution has no mode. If a+ c > 1, the
above equation has a unique solution

x = b

(
a+ c− 1

ab

)1/a

.

This implies that the GG is a unimodal distribution.

The following theorem characterizes how the gamma shape parameter affects the
tail behavior of the GG distribution.
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Theorem 3.6. Assuming the parameterization of the generalized gamma density in
(2), we define a function of the gamma shape parameter c based on the generalized
gamma density function as follows

g0(c) =
ab−a−cxa+c−1 exp[−(x/b)a]

Γ[(a+ c)/a]

where a, b, and x are considered as constant scalars. Then, for any given positive triple
(a, b, x), there exists a unique c0, such that g′0(c) > 0 for −a < c < c0 and g′0(c) < 0
for c > c0.

Proof. Since g0(c) and ln g0(c) have the same monotonic intervals. We proceed to
examine the monotonicity of ln g0(c). Note that

ln g0(c) = ln(a)− (a− c) ln(b) + (a+ c− 1) ln(x)− (x/b)a − ln Γ[(a+ c)/a].

The partial derivative with respect to c is given by

d

dc
ln g0(c) = ln

(x
b

)
− Ψ[(a+ c)/a]

a
.

By Lemmas 3.1 and 3.2, Ψ[(a+ c)/a] is increasing in (a+ c)/a. Hence, Ψ[(a+ c)/a] as
a function of c is increasing in c. This implies that dg0(c)/dc is a decreasing function
of c with domain a < c < +∞ and range −∞ < c < +∞. Consequently, there exists
a unique c0 such that

d

dc
ln g0(c) > 0 for − a < c < c0 and

d

dc
ln g0(c) < 0 for c > c0

Therefore, g′0(c) > 0 for −a < c < c0 and g′0(c) < 0 for c > c0. The proof is complete.

The geometric implication of Theorem 3.6 is straightforward: for fixed a, b and x,
we solve for c0 from the following nonlinear equation

ln
(x
b

)
− Ψ[(a+ c)/a]

a
= 0

If −a < c < c0, as c increases, the GG density g(x) increases in c. In other words,
increasing the value of c on the left of c0 lifts the density curve upwards which makes
the left tail of the density thicker. However, if c > c0, as c increases, the GG density
g(x) decreases in c. This means increasing the value of c on the right of c0 pulls the
density curve upwards which makes the right tail of the density curve thinner.

As mentioned earlier, the shape of the density curve is important in modeling pro-
cess capability in statistical quality control. Specific applications of the GG model in
process capability analysis and quality selection will be addressed separately elsewhere.

4. Reliability and Survival Analysis

This section discusses the reliability properties of the proposed GG distribution. We
focus on the analysis of the hazard rate function. Note that the survival function of
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the GG distribution is given by

4.1. Hazard Rates Function

The bathtub and upside-down bathtub hazard rates are common in reliability and pro-
duction engineering. Many consumers’ product life cycles strongly exhibit the bathtub
curve. Identifying turning points of a hazard rate function is critically important in
reliability analysis.

SGG(x) =

∫ ∞

x

ab−a−cta+c−1 exp[−(t/b)a]

Γ[(a+ c)/a]
dt =

Γ[(a+ c)/a, (x/b)a]

Γ[(a+ c)/a]
. (11)

The hazard rate function is then given by

h(x) =
ab−a−cxa+c−1 exp[−(x/b)a]

Γ[(a+ c)/a, (x/b)a]
(12)

where

Γ[(a+ c)/a, (x/b)a] =

∫ ∞

(x/b)a
yc/a exp(−y)dy

is the upper incomplete gamma function.
The shape of the hazard rate function is depicted in the following Figures 4 and 5.
We can see from Figure 4 that the hazard rate of the GG model is always smaller

than that of the standard Weibull model when c > 0. Note that the gamma shape
parameter can take on negative values that satisfy a+ c > 0. This choice of a negative
value for the gamma shape parameter could result in a bathtub shape hazard rate (see
Figure 5). The hazard rate of the GG model is always bigger than that of the standard
Weibull model when c < 0.

The above visual representations of the hazard rate functions indicate the flexible
shape of hazard rates when taking different values of the new shape parameter c
together with different values of a. At the same time, we also see that the hazard rate
as a function of c is decreasing. This is reflected in the following theorem.

Theorem 4.1. For fixed values of the shape parameter, a, and the scale parameter b,
the hazard rate of the generalized gamma model decreases as the value of the gamma
shape parameter c increases for any given x. That is, the hazard rate as a function of
the gamma shape parameter c is decreasing.

Proof. We first observe that

∂

∂c
Γ [(a+ c)/a, (x/b)a] =

∫ ∞

(x/b)a

∂

∂c
yc/a exp(−y)dy

=

∫ ∞

(x/b)a
yc/a ln y1/a exp(−y)dy ≥

∫ ∞

(x/b)a
yc/a ln(x/b) exp(−y)dy.
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Figure 4. Adding the gamma shape parameter c changes the monotonicity of the hazard rate function. The
solid curve is the hazard rate based on the standard two-parameter Weibull distribution. The top two panels

contain some upside-down bathtub (UBT) hazard rates.

We rewrite the hazard function in the following form

h(x) =
ab−a−cxa+c−1 exp[−(x/b)a]

Γ[(a+ c)/a, (x/b)a]
=

ab−axa−1(x/b)c exp[−(x/b)a]

Γ[(a+ c)/a, (x/b)a]
.

Taking the derivative of h(x) with respect to c, we have

∂

∂c
h(x) =

(a/b)(x/b)a+c−1 exp[−(x/b)a]

Γ2[(a+ c)/a, (x/b)a]

{∫ ∞

(x/b)a
yc/a ln(x/b) exp(−y)dy

− ∂

∂c
Γ [(a+ c)/a, (x/b)a]

}
≤ 0.

This proves that the hazard rate is a decreasing function of the gamma shape param-
eter c.

4.2. Mean Residual Life (MRL)

In survival or reliability studies, the mean residual life or life expectancy is an im-
portant characteristic of the model. Using the relationship between the hazard rate
function and the mean residual lifetime, we have the following mean residual lifetime
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Figure 5. The hazard rate curve of the proposed GG model is based on the choice of the negative gamma
shape parameter. All hazard curves in the bottom two panels are bathtub-shaped except the one based on the

standard Weibull model (the bottom curve).

function (MRL)

m(t) =

∫∞
t SGG(x)dx

SGG(t)
=

∫∞
t Γ[a+c

a , (xb )
a]dx

Γ[a+c
a , ( tb)

a]
,

where

Γ

[
a+ c

a
,
(x
b

)a
]
=

∫ ∞

(x/b)a
yc/a exp(−y)dy.

We note that the general algebraic relationship between hazard rate and mean
residual lifetime is expressed in the following first-order differential equation

m′(t) = h(t)m(t)− 1.

An alternative to obtaining the mean residual lifetime is to solve the above differential
equation with an initial value

m(0) = E(T ) =
bΓ[(a+ c+ 1)/a]

Γ[(a+ c)/a]
,

where the mean survival time E(T ) is given in ( 8).
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Next, we plot MRL with several parameter configurations used in Figures 4 and 5
to see how the gamma shape parameter c affects the MRL.
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Figure 6. For fixed a and b, as c increases, the mean residual lifetime also increases.

0 1 2 3 4 5

0
1

2
3

4

Life Time

M
e

a
n

 R
e

s
id

u
a

l 
L

if
e

ti
m

e

a =  0.7 , b =  1 , c = 0

a =  0.7 , b =  1 , c =  −0.2

a =  0.7 , b =  1 , c =  −0.45

a =  0.7 , b =  1 , c =  −0.699

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Life Time

M
e

a
n

 R
e

s
id

u
a

l 
L

if
e

ti
m

e

a =  1 , b =  1 , c = 0

a =  1 , b =  1 , c =  −0.35

a =  1 , b =  1 , c =  −0.7

a =  1 , b =  1 , c =  −0.98

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Life Time

M
e

a
n

 R
e

s
id

u
a

l 
L

if
e

ti
m

e

a =  1.5 , b =  1 , c = 0

a =  1.5 , b =  1 , c =  −0.5

a =  1.5 , b =  1 , c =  −1

a =  1.5 , b =  1 , c =  −1.49

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Life Time

M
e

a
n

 R
e

s
id

u
a

l 
L

if
e

ti
m

e

a =  5.7 , b =  1 , c = 0

a =  5.7 , b =  1 , c =  −5

a =  5.7 , b =  1 , c =  −5.2

a =  5.7 , b =  1 , c =  −5.6

Figure 7. For fixed a and b, as c decreases, the mean residual lifetime also decreases.

It turns out that, from Figures 6 and 7, the MRL is increasing in terms of the
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gamma shape parameter for Weibull shape and scale parameters.

5. Kullback-Leibler Divergence

Kullback-Leibler [21] divergence (i.e., relative entropy) defines a natural “statistical
distance” to measure the discrepancy between two distributions. We are particularly
interested in the discrepancy between the GG(a, b, c) distribution and the standard
Weibull distributions GG(a, b, 0). In this section, we define a Kullback-Leibler diver-
gence and obtain some theoretical results of the ”distance” in relation to the gamma
shape parameter c.

For any given two continuous distributions f1 and f2, the Kullback-Leibler diver-
gence is defined to be

KL[f1||f2] =
∫
D1

f1(x) ln

[
f1(x)

f2(x)

]
dx, (13)

where D1 is the domain of f1(x).
We first derive the KL divergence based on the GG model with parametrization (2).

We denote GG1(a1, b1, c1) and GG2(a2.b2, c2) to be two different GG distributions. The
KL divergence between the two GG distributions is given below.

Lemma 5.1. Assume that GG1(a1, b1, c1) and GG2(a2.b2, c2) are two generalized
gamma distributions. The Kullback-Leibler divergence measure between any two GG
distributions is given by

KL[fGG1
||fGG2

] = ln
Γ[p2/a2]a1b

−p1

1

Γ[p1/a1]a2b
−p2

2

+
p1 − p2

a1

[
Ψ

(
p1
a1

)
+ ln b1

]

−p1
a1

+

(
b1
b2

)a2 Γ[(p1 + a2)/a1]

Γ[p1/a1]
(14)

where p1 = a1 + c1 and p2 = a2 + c2.

Proof. The proof is given in the appendix.

Let g0(x) and g1(x) be the density functions of the standard Weibull and the gener-
alized gamma distributions, denoted by GG(a, b, 0) and GG(a, b, c), respectively. The
Kullback-Leibler divergence measures KL[g0||g1] and KL[g1||g0] are given respectively
by

KL[g0||g1] = ln Γ[(a+ c)/a] + c ln b− c

a
[Ψ(1) + ln b], (15)

and

KL[g1||g0] =
c

a
[Ψ[(a+ c)/a] + ln b]− ln Γ[(a+ c)/a]− c ln b. (16)
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Since KL[g0||g1] and KL[g1||g0] are not equal. It is better to define asymmetric dis-
tance using both KL divergence measures. We choose to define a measure to assess the
discrepancy between the generalized gamma and the Weibull distribution by taking
the sum of the two Kullback-Leibler divergence measures as follows

D(g0,g1)(c) = KL[g0||g1] +KL[g1||g0] =
c

a

[
Ψ

(
a+ c

a

)
−Ψ(1)

]
(17)

The KL divergence measure as a function of gamma shape parameter c, D(g0,g1)(c),
provides a way to describe how the gamma shape parameter c impacts the discrepancy
between the Weibull and the generalized gamma distributions.

Theorem 5.2. Let g0(x) and g1(x) be the density functions of the standard Weibull
distribution GG(a, b, 0) and the generalized gamma distribution GG(a, b, c), respec-
tively. The distance D(g0,g1)(c) measuring the discrepancy between g0(x) and g1(x) has
the following properties:
(a). D(g0,g1)(c) is a non-negative function of c for all a.
(b). D(g0,g1)(c) is a decreasing function on (−a, 0) and an increasing on (0,∞).
(c). D(g0,g1)(c) = 0 if and only if g0(x) = g1(x).

Proof. (a). Note that Ψ() is an increasing function. If c > 0, (a + c)/a > 0 which
implies that Ψ[(a+c)/a] > Ψ(1). Therefore, D(g0,g1) > 0. This result holds for the case
of c < 0 using a similar argument.
(b). We use the properties of polygamma functions in Lemma 3.1 to prove this part.
Taking the derivative of D(g0,g1)(c), we have

dD(g0,g1)(c)

dc
=

Ψ[(a+ c)/a]−Ψ(1)

a
+

cΨ1[(a+ c)/a]

a2
.

Note that Ψ[(a+ c)/a] > 0 for c > −a.

Case 1 : If c ∈ (−1, 0), then Ψ[(a + c)/a] − Ψ(1) < 0 since digamma is increasing
(Lemma 3.1). This means dD(g0,g1)(c)/dc < 0. Hence, D(g0,g1)(c) is a decreasing
function on (−a, 0).

Case 2 : If c ∈ (0,∞), then Ψ[(a + c)/a] − Ψ(1) > 0 . Therefore, dD(g0,g1)(c)/dc > 0.
This means that D(g0,g1)(c) is increasing on (0,∞).

From the above cases 1 and 2, we know that c = 0 is the unique root of equation
dD(g0,g1)(c)/dc = 0 . Note that

d2D(g0,g1)(c)

dc2
|c=0 =

{
2Ψ1[(a+ c)/a]

a2
+

cΨ2[(a+ c)/a]

a3

}
|c=0 =

2Ψ1(1)

a2
> 0.

Therefore, D(g0,g1)(c) is a convex function achieving the minimum at c = 0.

(c). The sufficient condition is obvious. We only prove the necessary condition. Assume
that D(g0,g1)(c) = c {Ψ[(a+ c)/a]−Ψ(1)}, then c = 0 or Ψ[(a+ c)/a]−Ψ(1) = 0. The
second equation implies c = 0 since digamma function is strictly increasing. This
proves that g0 ≡ g1, hence, the necessary condition holds.
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a.

Part (c) of the above theorem will be used to develop a parametric hypothesis test
for H0 : c = 0 in Section 7.

6. Maximum Likelihood Estimation and Inference

This section focuses on the maximum likelihood estimation of the model parameters
and relevant inferences.

6.1. Likelihood function under reparametrization

To avoid computational challenges, we reparametrize the model parameter by letting
p = a+ c. The three parameters after reparametrization are a, b, and p.

g(x) =
(a/b)(x/b)p−1 exp[−(x/b)a]

Γ(p/a)
. (18)

The inference on the partial gamma shape parameter c will be based on c = p− a.
Next, we establish the maximum likelihood estimation of the model parameters a, b,
and p. For notational convenience, we denote GGS(a, b, p) = GG(a, b, a+ c) to reflect
the reparametrization (where p = a+ c). With this new notation, the two-parameter
Weibull is represented by GG(a, b, 0) = GGS(a, b, a) and the two-parameter gamma
distribution is GG(1, b, c) = GGS(1, b, 1 + c).

Let {x1, x2, · · · , xn} be a random sample taken from the population that follows
the proposed GG distribution. The likelihood function has the following form

L(a, b, p) =

n∏
i=1

g(xi) = [Γ(p/a)]−n (a/b)n
n∏

i=1

{
(xi/b)

p−1 exp [−(xi/b)
a]
}
. (19)
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The log-likelihood function is given by

l(a, b, p) = n ln a− n ln b− n ln Γ(p/a) + (p− 1)

n∑
i=1

ln(xi/b)−
n∑

i=1

(xi/b)
a. (20)

The log-likelihood involves the log gamma function. We have studied some properties
of the log gamma functions and their derivatives in Section 3.

6.2. MLE of model parameters and asymptotic results

With the above notations, we derive the score equations as follows

∂l(a, b, p)

∂a
=

n

a
+

np

a2
Ψ
(p
a

)
−

n∑
i=1

(xi
b

)a
ln
(xi
b

)
= 0, (21a)

∂l(a, b, p)

∂b
= −np

b
+

a

b

n∑
i=1

(xi
b

)a
= 0, (21b)

∂l(a, b, p)

∂p
= −n

a
Ψ
(p
a

)
+

n∑
i=1

ln
(xi
b

)
= 0. (21c)

The MLE of θ = c(a, b, p)T , denoted by θ̂ = c(â, b̂, p̂)T , is the solution to the above
score equations.

To derive the asymptotic results of the MLE, we need the following Fisher informa-
tion matrix (of the sample) that is defined to be the expectation of the Hessian matrix
H(θ) with the following form

In(θ) = −E[H(θ)] = −E


∂2l(θ)
∂a2

∂2l(θ)
∂a∂b

∂2l(θ)
∂a∂p

∂2l(θ)
∂b∂a

∂2l(θ)
∂b2

∂2l(θ)
∂b∂p

∂2l(θ)
∂p∂a

∂2l(θ)
∂p∂b

∂2l(θ)
∂p2

 =

ia2 iab iap
iba ib2 ibp
ipa ipb ip2

 (22)

where θ = (a, b, p). After some algebra, we have the following explicit expression of
the cell elements of the Fisher Information matrix (of the sample data).

iaa =
n

a2

[(p
a

)2
Ψ1

(p
a

)
+ 1

]
+

np

a3

[
Ψ2

(
a+ p

a

)
+ 2Ψ

(p
a

)
+Ψ1

(
a+ p

a

)]

iab = −np

ab

[
Ψ

(
a+ p

a

)
+ 1

]
, iap = − n

a2

[
Ψ
(p
a

)
+

p

a
Ψ1

(p
a

)]

ibb =
npa

b2
, ibp =

n

b
, ipp =

n

a2
Ψ1

(p
a

)
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The asymptotic results of MLE can be established under some regularity condi-
tions (such as parameter space is invariant on sample size, the likelihood function is
continuous, and the first three moments are bounded) based on the following theorem.

Theorem 6.1. Let θ̂ = (â, b̂, p̂) be the MLE of the true parameter θ = (a, b, p) es-
timated based on the i.i.d. sample {x1, x2, · · · , xn} from the GG model and T (θ) be

the expected Fisher Information matrix. The asymptotic sampling distribution of θ̂ is
given by

(θ̂ − θ) → N
(
0, I−1

n (θ)
)

(23)

For convenience, we denote

var(θ̂) = I−1(θ) =

σaa(θ) σab(θ) σap(θ)
σba(θ) σbb(θ) σbp(θ)
σpa(θ) σpb(θ) σpp(θ)

 (24)

The MLE of the variance is obtained using the plug-in principle of MLE, that is,
v̂ar(θ̂) = I−1(θ̂). In general, if the closed form of the Information matrix does not
exist or the approximation of the matrix is hard to obtain or too complex, we can
use the observed Fisher Information matrix (i.e., negative Hessian matrix) in many
practical applications. In this study, we have a closed form of the Fisher information
matrix that is easy to evaluate. Both the observed information matrix and the observed
Fisher information matrix can be used in practical applications.

7. Goodness-of-fit and Model Selection

Two major types of tests of particular interest will be discussed in this section: a
goodness-of-fit test of GG and tests for testing the discrepancy between the GG and
the standard Weibull models.

7.1. Kolmogorov–Smirnov Test

To test the goodness of fit of the model, we propose the Kolmogorov–Smirnov (KS)
test which is defined based on the distance between the CDFs of the GG and its
empirical distributions based on the random sample. The test statistic is defined by

Dn =
√
n sup

x∈R+

|GGn(x)−GG0(x)|, (25)

where the empirical CDF is defined as GGn(x) =
∑n

i=1 I(xi < x)/n using the random
sample and G0(x) is the CDF of GG specified in (3). Consider testing hypothesis

H0 : GG = GG0 v.s. H1 : GG ̸= GG0

18



Under the null hypothesis, the above test statistic follows (approximately)
Kolmogorov-Smirnov distribution with CDF

FKS(x) = 1−
n∑

k=1

(−1)k−1 exp(−2k2x).

Let q be a real number determined by the significance level α, that is, q satisfies

α = P [Dn ≥ q|H0].

The decision of the KS test is based on the following rule:

Ho is concluded if Dn ≤ q; Ho is rejected if Dn > q. (26)

7.2. A Monte Carlo Goodness of Fit

In this subsection, we propose a Monte Carlo KLD test to justify the discrepancy be-
tween the generalized gamma and the standard Weibull models. Let g1(x) be the den-
sity function of the three-parameter generalized gamma distribution GG(a, b, c) and
g0(x) be the two-parameter Weill distribution GG(a, b, 0). In Section 5, we defined the
KLD between GG(a, b, c) and GG0(a, b, 0) using Stacy’s [44] original parametrization
as follows

D(g0,g1)(p, a) =
p− a

a
[Ψ(p/a)−Ψ(1)] (27)

where p = a+ c.
Intuitively, if the gamma shape parameter c in a generalized gamma distribution

is zero, then D(g0,g1)(p, a) = 0. Empirically, if we fit the three-parameter generalized

gamma model GG(a, b, c) to a random sample {x1, x2, · · · , xn} to obtain MLE (â, b̂, ĉ)

and plug â and p̂ = â + ĉ into D(g0,g1)(p, a) = 0, denoted as K̂LD = D(g0,g1)(p̂, â).

If K̂LD is significantly bigger than zero, we have evidence to claim the underlying
population is NOT a Weibull distribution. Otherwise, we support the underlying pop-

ulation to be the regular two-parameter Weibull. Therefore, K̂LD = D(g0,g1)(p̂, â) can
be used to establish a formal testing hypothesis about

H0 : GG = GG(a, b, 0) versus Ha : GG = GG(a, b, c) (28)

In order to find the p-value for making a statistical decision, we need to know

the distribution of K̂LD. The analytical (asymptotic) sampling distribution is not
available due to the definition of the KLD. However, we can easily simulate the
sampling distribution of the test statistic (i.e., the estimated KLD) via the Monte
Carlo method. The following algorithm gives the steps for this test.

Algorithm 7.1. The steps for performing the Monte Carlo test (28) are given in the
following.
A. Test Statistic: Let {x1, x2, · · · , xn} be the random sample from GGS(a, b, p)
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(Stacy’s parametrization) and (â, b̂, p̂) be the MLE of (a, b, p). Plug (â, b̂, p̂) into (27)
to find the test statistic

TS =
p̂− â

â
[Ψ(p̂/â)−Ψ(1)] (29)

B. Sampling Distribution of TS under H0:
B.1. Generate B Monte Carlo random samples with the same size as the data set from
Weibull distribution GGS(â, b̂, â).
B.2. Fit the three-parameter generalized gamma GGS(a, b, p) to each of the B samples
and obtain MLEs (ãm, b̃m, p̃m) for m = 1, 2, · · · , B.
B.3.Using each set of MLEs obtained from each Monte Carlo sample to evaluate the
Monte Carlo test statistic, for m = 1, 2, · · · , B;

T̃ Sm =
p̃m − ãm

ãm
[Ψ(p̃m/ãm)−Ψ(1)] (30)

B.4. The sampling distribution of the test statistic can be approximated by the

following Monte Carlo sampling distribution based on {T̃ S1, T̃ S2, · · · , T̃ SB}.

C. P-value of Monte Carlo Test: The p-value can be calculated by

p-value ≈ #(T̃ Sm > TS)/B. (31)

Remark 1. The KLD has a nice analytic expression. However, we cannot use the
plug-in principle of the MLE to approximate the sampling distribution of the test

statistics, K̂LD, under H0 since the two hypothetical distributions were assumed to
have the same (Weibull) shape a and the same scale b and p = a. In other words, the
null hypothesis does not claim any specific values for the parameters. Therefore, the

delta method cannot be used to approximate the distribution of K̂LD based on the
asymptotic distribution of (â, b̂, p̂).

8. Simulation Studies and Power Analysis

We introduced a simulation-based Monte Carlo test for the gamma shape parameter
using KLD in Section 7. In this section, we perform a small simulation study to eval-
uate the performance of the proposed test. We choose the values of the Weibull shape
and scale parameters to be a = 4, b = 2, respectively. The gamma shape parameter c =
−3.5,−3.2,−3,−2.6,−2.5,−2.0,−1.5,−1,−0.5, 0, 1, 1.2, 1.5, 1.8, 2, 2.5, 2.8, 3, 3.3, 3.5.
We also choose 4 different sample sizes n = 30, 50, 100, 200 to see how the sample size
impacts the power.

8.1. GG random number generation

For each combination of (a, b, c), we simulated 1000 Monte Carlo samples from
GG(a, b, c) using the relationship between the generalized gamma and the specific
gamma distributions specified in (7). To be more specific, we summarize the following
steps for generating the random number from the generalized gamma distribution
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with given values for the model parameters.

Algorithm 8.1. Let q(u) = qgamma(u, shape, scale) be the quantile function of the
regular gamma distribution and be available in an existing program such as R, Python,
and SAS. To generate a random number from GG(a, b, c),

A. Generate a random number from uniform distribution u = unif(0, 1).
B. The following

X = b

(
qgamma

[
u, shape =

a+ c

a

])1/a

is the desired random number from GG(a, b, c).

To simulate the Monte Carlo distribution of the KLD under the null hypothesis of

the Weibull distribution (we also call it null distribution of K̂LD), we simply simu-
late B random samples with the sample size used in the simulation from GG(a, b, 0)

explicitly using b (qgamma [u, shape = 1])1/a (with u from Unif[0, 1]).

8.2. Power analysis

To calculate the power of the Monte Carlo test using various alternatives that are only
dependent on the different values of the gamma shape parameter and four different
sample sizes mentioned earlier.

For the null distribution, we simulate 10000 Weibull standalone samples from

GG(a, b, 0) to approximate the sampling distribution of K̂LD under the null hypoth-
esis H0 : c = 0.

For each combination of gamma shape parameter c and sample size n, we simulate
10000 random samples from GG(a, b, c) and calculate the corresponding KLD. The
significant level is 0.05.

The simulated power curves are summarized in the following figure.
As anticipated, we can see the following patterns from the above power curves.
(1). The power of the Monte Carlo test at c = 0 is close to the nominal level of 0.05.
(2). As c deviates from 0, the power of the underlying test gets bigger except for some
negative c values that are close to 0.
(3). As sample size increases, the corresponding power increases for any fixed value of
c except for some negative values of c that are close to 0.

9. Real-World Applications

The primary focus of this section is two-fold. The first objective is to perform a Kol-
mogorov–Smirnov goodness-of-fit test to determine whether the sample data in each
example came from the generalized gamma family. The second objective is to perform
significant tests on the two shape parameters H0 : a = 1 (i.e., the two-parameter
gamma distribution) and H0 : c = 0 (i.e., the two-parameter Weibull distribution) to
possibly select an appropriate subfamily of the GG to avoid potential over-fitting /
under-fitting issues. In addition to using the standard Wald χ2 significance test for the
two shape parameters, we use the proposed Monte Carlo simulation-based test for the
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Figure 9. Power curves of the Monte Carlo test with different c and sample size n.

new gamma shape parameter c. Testing for H0 : b = 1 is provided for practitioners to
potentially choose a simpler model in the GG family.

9.1. Environmental Process Modeling

Example 1. We use the average flows of water (in m3/s) of the Piracicaba River,
Brazil, between August 1972 and 2014. The data sets were obtained from the De-
partment of Water Resources and Power agency manager of water resources of the
State of São Paulo by Ramos et al [40]. Accurately estimating the distribution of the
water flow is essential for environmental planning and policymaking to meet the needs
of people, agriculture, industry, energy, and ecosystems within the limits of available
supply and under a changing climate. Environmental flow is a practical tool for man-
aging allocation in the water-energy-food nexus. We only use the August data to fit
the GG to the data and report the results of tests in the following table.

Table 1. Results of various tests for the average water flow data of

Piracicaba River, Brazil.

Test MLE SE TS P-value

H0: a = 1 (Wald) 0.49818 0.02166 536.9969 < 0.0001
H0: b = 1 (Wald) 0.00382 0.00049 4225061 < 0.0001
H0: c = 0 (Wald) 24.399 4.6613332 27.39862 < 0.0001
H0: c = 0 (MC) – – – ≈ 0.004
H0: GOF (K-S) – – 0.15563 0.24692

The result of the KS test in Table 1 implies that the sample comes from a gener-
alized gamma population (p-value = 0.247). Both Wald and Monte Carlo significance
tests of the shape parameters indicate that the gamma and Weibull distributions are
inappropriate in modeling this water flow data. The generalized gamma distribution
is appropriate for modeling the average of the water flow.
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9.2. Modeling Financial Volatility

Example 2. As a measure of risk, volatility plays an important role in both asset
pricing and risk management and has been a central theme in the literature of both
financial economics and econometrics. The popular exponential and Weibull distri-
butions are commonly used for estimating volatility. However, misspecification of the
distribution for the volatility causes serious modeling issues such as inlier and outlier
problems in volatility forecasting (see Xie and Wu’s [46] recent work for more detail).

The data set for this example is taken from the recent work of Afuecheta et al [1]
in which authors proposed several candidate innovations for the GARCH model to
predict the volatility of financial series. The returns data of Litecoin (LTC) for the
period starting from the 24th of October 2013 to the 16th of June 2018 will be used in
this example. The volatility is measured by the standard deviation of daily log-returns
of Litecoin (LTC) taken over non-overlapping windows of a length of 30 days (a 50-day
window was used in the original paper). To avoid rounding-off errors due to the small
magnitude of volatility, we re-scale the volatility by multiplying 100 before fitting the
gamma distribution to re-scaled data. The following table summarizes the test results.

Table 2. Results of various tests for Litecoin returns data.

Test MLE SE TS P-value

H0: a = 1 (Wald) 0.36435 0.01788 1263.4 < 0.0001
H0: b = 1 (Wald) 0.00388 0.00109 835403.7 < 0.0001
H0: c = 0 (Wald) 4.71687 0.73862 40.8 < 0.0001
H0: c = 0 (MC) – – – < 0.023
H0: GOF (K-S ) – – 0.065995 0.9677

The results in Table 2 indicate that the generalized gamma distribution fits the
30-day volatility of LTC daily log returns appropriately. The large sample Wald and
Monte Carlo simulation tests indicate that both gamma and the Weibull distribution
are inappropriate for modeling the returns of LTC because of the underfitting issue.
Therefore, to avoid misspecification, the generalized gamma distribution should be
used to estimate the volatility in this study.

10. Discussions and Conclusions

We provide a new formulation of the well-known generalized gamma distribution by
adding an additive gamma shape parameter c to the regular two-parameter Weibull
distribution. Some novel characterizations of the shape of the hazard rate and density
curves associated with the gamma parameter c are provided. These shape character-
izations are useful in many applications such as in modeling statistical processes for
capability and quality control, the behavior of hazard rates in reliability, and survival
analysis.

We also developed a novel Monte Carlo simulation test using Kullback-Leibler
divergence-based (KLD) for model selection between the standard Weibull distribu-
tion and generalized gamma distribution. Several other tests for goodness-of-fit and
significance of the two shape parameters to avoid potential model misspecification and
over/under-fitting issues were also presented.

The two real-world numerical examples demonstrate that, in some real-world appli-
cation problems, the generalized gamma distribution must be used to avoid potential
under-fitting, while in some other applications, distributions in a sub-family of the
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generalized gamma such as Weibull, gamma, or exponential must be used to avoid
over-fitting.
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11. Appendix

Proof of Lemma 3.4. The proof of this Lemma can be obtained through direct
calculation.
(1). Part (1) of Lemma 3.3 will be used in the last step of the following derivation.

E

[(
X

b

)k

ln

(
X

b

)]
=

∫ ∞

0

(x
b

)k
ln
(x
b
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exp

[
−
(x
b

)a]
dx

=
1

aΓ[(a+ c)/a]

∫ ∞

0
ln
(x
b

)a [(x
b

)a](k+c)/a
exp

[
−
(x
b

)a]
d
(x
b

)a

=

∫∞
0 y(c+k)/a ln(y) exp(−y)dy

aΓ[(a+ c)/a]

p=a+c
=

Γ[(p+ k)/a]Ψ[(p+ k)/a]

aΓ(p/a)

(2). Part (2) of Lemma 3.3 will be used in the last step.
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Proof of Lemma 5.1. Let p1 = a1 + c1 and p2 = a2 + c2. Note that

ln

[
fGG1

(x)

fGG2
(x)

]
= ln

[
Γ[p2/a2]a1b

−p1

1

Γ[p1/a1]a2b
−p2

2

]
+ lnx(p1−p2) −

(
x

b1

)a1

−
(
x

b2

)a2

.

Using the results in Lemma 3.3, we have

EGG1

[
ln

(
X

b1

)]
=

1

a1
Ψ

(
p1
a1

)
, EGG1

[
Xk

]
=

bk1Γ[(p1 + k)/a1]

Γ(p1/a1)
.

By the definition of KL distance and the above results, we write the KL distance
explicitly in the following

KL [fGG1
||fGG2

] =

∫ ∞

0
fGG1

(x) ln
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(x)
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(x)

]
dx

= ln
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2
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+

p1 − p2
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.
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