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1 Introduction
Anomaly Detection is the process of identifying unusual patterns, events, or observations in data that do
not conform to expected behavior. It has applications in various fields, such as fraud detection, cybersecurity,
healthcare, and industrial monitoring. The main objective is to detect points or sequences that differ
significantly from the normal data which imply potential issues, threats, or insights.

There are different types of detection methods in classical statistics methods such as density-based methods,
statistical clustering, etc., and machine learning-based methods such as distance-based unsupervised learning
methods and related supervised learning algorithms including one-class support vector machines. The
following is a list of commonly used types of anomaly detection methods.

• Statistical Methods: Identify anomalies based on data distribution assumptions. Examples include
the Z-score, Grubbs’ test, and Mahalanobis distance.

• Machine Learning Methods: Algorithms like Isolation Forest, One-Class SVM, and K-Nearest
Neighbors (K-NN) detect anomalies by learning patterns from normal data.

• Clustering-Based Methods: Group similar data points, identifying outliers that don’t fit into any
clusters, such as K-means and DBSCAN. We will detail

• Time-Series-Specific Methods: ARIMA, Exponential Smoothing, and LSTM, designed for detecting
anomalies in sequential data.

2 Anomaly Detection Use Cases
In essence, identifying fraud is an anomaly detection process that identifies unusual patterns that do not
fit normal behavior in the data generation process. Sometimes, people break anomaly detection algorithms
down into two subclasses: outlier detection and novelty detection.

• Outlier detection: the input data set contains examples of both standard events and anomaly
events. These algorithms seek to fit regions of the training data where the standard events are most
concentrated, disregarding, and therefore isolating the anomaly events. Such algorithms are often
trained in an unsupervised fashion (i.e., without labels). We sometimes use these methods to help clean
and pre-process data sets before applying additional machine-learning techniques.

• Novelty detection: Unlike outlier detection, which includes examples of both standard and anomaly
events, novelty detection algorithms have only the standard event data points (i.e., no anomaly events)
during training time. During training, these algorithms use only labeled examples of standard events
(supervised learning). At the time of testing/prediction, novelty detection algorithms must detect when
an input data point is an outlier.

Anomaly detection has become crucial across multiple domains to identify unusual patterns that could signify
potential issues or hidden insights. Here’s an overview of its primary use cases in various industries that
every applied statistician should know.

2.1 Finance and Banking
Fraud Detection: Identifying suspicious transactions or activities, such as unusual spending patterns, credit
card fraud, or account takeovers. Anomaly detection helps spot fraud in real-time by flagging transactions
that deviate from an individual’s typical (spending) behavior.

Anti-Money Laundering (AML): Detects unusual transaction sequences or transfers across accounts
to prevent money laundering. Algorithms help spot patterns like frequent large cash deposits followed by
international transfers.

Risk Management: In trading and investment, anomaly detection identifies unusual market movements,
helping financial institutions detect market manipulation or systemic risks.
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2.2 Cybersecurity
Intrusion Detection: Monitors network traffic to detect unusual behavior that may indicate a cybersecurity
attack, such as Distributed Denial of Service (DDoS) attacks, phishing, or unauthorized access attempts.

Behavioral Monitoring: Observes user behavior on networks and systems to detect insider threats by
spotting unusual login times, excessive file access, or other deviations from regular patterns.

2.3 Healthcare
Patient Monitoring: In healthcare, anomaly detection can monitor vital signs and health metrics in
real-time, identifying potential health risks or emergencies, such as abnormal heart rates or respiratory issues.

Medical Diagnostics: Helps detect diseases early by identifying unusual patterns in medical images, lab
results, or genetic data, improving diagnostics for conditions like cancer or cardiac abnormalities.

Operational Efficiency: Monitors hospital or clinic operations, such as inventory usage or patient flow, to
detect inefficiencies or predict shortages.

2.4 Manufacturing and Industrial Maintenance
Predictive Maintenance: Detects unusual patterns in sensor data from machinery (vibration, temperature,
etc.), predicting potential equipment failures before they occur, reducing downtime and repair costs.

Quality Control: Monitors production quality to detect defects or irregularities in the manufacturing
process, helping to maintain product standards and reduce waste.

Supply Chain Management: Identifies unusual trends in supply and demand, enabling proactive measures
for stock management and preventing bottlenecks.

2.5 Human Resources and People Analytics
Employee Performance Monitoring: Detects changes in productivity metrics, helping HR to identify
employees who may need additional support or training.

Absenteeism and Turnover Prediction: Identifies unusual patterns in employee attendance or satisfaction,
helping companies proactively address retention and morale.

Workplace Security: Monitors access to secure areas or data, detecting potential insider threats or
unauthorized access.

2.6 Environmental Monitoring
Weather and Climate Anomalies: Detects unusual patterns in temperature, humidity, or precipitation,
contributing to climate research and early warning systems.

Natural Disaster Detection: Monitors seismic or meteorological data for early signs of natural disasters
like earthquakes, floods, or wildfires, allowing for timely response. Wildlife and Ecosystem Monitoring:
Identifies unusual patterns in animal movement, habitat conditions, or ecosystem metrics, which can aid in
conservation efforts.

In summary, anomaly detection helps various industries detect early warning signs, improve operational
efficiency, prevent losses, and enhance security. The use cases span a wide array of sectors, including finance,
healthcare, cybersecurity, manufacturing, environmental monitoring, etc. With advances in data science
and machine learning, anomaly detection methods are becoming more sophisticated and tailored to specific
applications, making them an essential tool in today’s data-driven world.
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3 Supervised and Unsupervised Anomaly Detection
Depending on whether the labels are available, anomaly detection techniques can be categorized into one of
the following three modes:

3.1 Supervised Anomaly Detection
Techniques trained in supervised mode assume the availability of a training data set that has labeled instances
for normal as well as anomaly classes. A typical approach in such cases is to build a predictive model for
normal vs. anomaly classes. Any unseen data instance is compared against the model to determine which
class it belongs to.

Two major issues arise in supervised anomaly detection.

• Imbalance Labels: The anomalous instances are far fewer compared to the normal instances in the
training data. Issues that arise due to imbalanced class distributions have been addressed in the data
mining and machine-learning literature

• Inaccuracy of Label: obtaining accurate and representative labels, especially for the anomaly class is
usually challenging. This is particularly true in the world of credit card fraud operations.

Other than these two issues, the supervised anomaly detection problem is similar to building predictive
models such as logistic regression and decision tree algorithms.

3.2 Semi-Supervised Anomaly Detection.
These types of methods usually assume that the training data has labeled instances for only the normal
class. Since they do not require labels for the anomaly class, they are more widely applicable than supervised
techniques. The typical approach used in such techniques is to build a model for the class corresponding to
normal behavior and use the model to identify anomalies in the test data.

A limited set of anomaly detection techniques exist that assume the availability of only the anomaly instances
for training. Such techniques are not commonly used, primarily because it is difficult to obtain a training
data set that covers every possible anomalous behavior that can occur in the data.

Sometimes, we have to use supervised and unsupervised methods to label some unlabeled examples to reach
the minimum sample size for using supervised anomaly detection methods.

3.3 Unsupervised Anomaly Detection.
These types of methods operate in unsupervised mode and do not require training data, and thus are most
widely applicable. The techniques in this category make the implicit assumption that normal instances are
far more frequent than anomalies in the test data. If this assumption is not true then such techniques suffer
from a high false alarm rate.

Many semi-supervised techniques can be adapted and used in an unsupervised model by using a sample
of the unlabeled data set as training data. Such adaptation assumes that the test data contains very few
anomalies and the model learned during training is robust to these few anomalies.

3.4 Common Anomaly Detection Algorithms
Machine learning algorithms are widely utilized for anomaly detection, with their application varying
depending on the data set size and the specific characteristics of the problem. Here are some of the key
algorithms for anomaly detection:

Local Outlier Factor (LOF): This algorithm identifies anomalies by comparing the local density of data
points. A data point is considered an outlier if its density is significantly lower than that of its neighbors.
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K-Nearest Neighbors (kNN): Though typically a supervised learning algorithm used for classification,
kNN can be adapted for unsupervised anomaly detection techniques. It involves defining what constitutes
normal and abnormal values without traditional training processes. This flexibility makes kNN suitable for
both small and large data sets and facilitates straightforward visualization of results.

Support Vector Machines (SVM): As a supervised anomaly detection learning method, SVM classifies
data by separating them into classes with hyper-planes in a multi-dimensional space. For AD, SVM can be
tailored to single-class scenarios where the model learns to identify the ‘normal’ class and flags data not
fitting this classification as anomalies.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) : This unsupervised
anomaly detection algorithm relies on density-based clustering. It identifies clusters in large data sets by
evaluating the local density of data points, with outliers marked as -1, indicating they do not belong to any
cluster.

Autoencoders: Utilizing artificial neural networks, autoencoders compress data into a reduced dimension
before reconstructing it to its original form. This process helps in retaining essential information in the
compressed representation, which is useful for spotting outliers. Bayesian Networks: Effective in high-
dimensional data scenarios, Bayesian networks are valuable for identifying subtle anomalies that are not
easily detectable through conventional plotting techniques.

In the following section, we introduce one outlier detection - the local outlier factor (LOF) score method to
detect outliers (anomaly).

4 Local Outlier Factor (LOF) Method: Outlier Detection
The LOF [proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander in 2000] is
the most well-known local anomaly detection algorithm whose idea is carried out in many nearest-neighbor-
based algorithms.

When a point is considered as an outlier based on its local neighborhood, it is a local outlier. LOF will
identify an outlier considering the density of the neighborhood. LOF performs well when the density of
the data is not the same throughout the dataset.

4.1 Definitions of Some Distances

Before introducing the steps for calculating the LOF score, we define the following technical terms.

4.1.1 Normal Distance (ND)

Any of the valid “statistical distances” such as Euclid, Minkowski, Manhattan, etc. Normal distance between
two points A and B is usually denoted by d(A, B) or ND(A, B).

Example 1: The following figure illustrates how to find the Manhattan distance between two points in the
2-dimensional space.

4.1.2 k-distance (kD)

For the pre-selected k, k-distance is defined to be the distance of a (new) point to its kth neighbor (i.e.,
k-th point). For example, if k was 3, the k-distance of A, denoted by k-distance(A), would be the distance
of point A to its third closest point which is D (B is the first closest neighbor, C is the second closest
neighbor), see the following Figure.

Example 2 (cont’d): Using the same toy data, we illustrate how to calculate the k-distance in the following
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Figure 1: Figure 2. Commonly used statistical distances.

Figure 2: Figure 3. Illustration of calculating the Manhattan distance between two points.

Figure 3: Figure 4. An illustration of k-distance with k = 3.
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Figure 4: Figure 5. An example of k-distance with k = 3.

4.1.3 Reachability Distance (RD)

RD is defined to be the maximum distance of two points and the k-distance of the second point. For example,
the reachability distance between A and D is given by

Reachability-Distancek(A, D) = max{k-distance (D), normal-distance (A, D)},

where normal-distance(A, D) could be any “statistical distance” that is used in k-distance(D).

Figure 5: Figure 6. Illustration of reachability distance.

Example 3 (cont’d): The following figure shows how to calculate reachability distance.

Figure 6: Figure 7. An example showing how to calculate reachability distance.
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4.1.4 Local Reachability Density (LRD)

LRD refers to how far we need to go from the point we are at to reach the next point or set of points. To
make the concept clearer, we introduce the following notations.

• k = pre-selected number to represent the k-th nearest neighbor (i.e., point).
• Nk(P) = the neighborhood of P that contains k nearest neighbors (i.e., points).
• ||Nk(P)|| = number of neighbors (point) in the neighbor of Nk(P). Note that ||Nk(P)|| ≥ k. The

following figure shows the scenario.

Figure 7: Figure 8. Example of a 2-NN (2 nearest neighbors) that has 4 neighbors (points).

• RDk(P, Q) = reachability distance (which is dependent on k). For example, in the above figure, the
reachability distance between P and A in the neighborhood of 2-closest neighbors is RD2(P, A) =
max{kD2(P, A), ND(P, A)} = max{|PB|, |PA|} = |PB|.

With the above notations, we define them in the following algebraic form. Assume the working data set has
records {A1, A2, · · · , An} and using the neighborhood containing k closest neighbors. The local reachability
density (LRDk(Ai)) of every point (i.e., neighbor) in the neighborhood around Ai with k-nearest neighbors
is given by

LRDk(Ai) = 1∑
A∈Nk(Ai)

RDk(A)
||Nk(Ai)||

The above formula looks complex and abstract. In fact,
∑

A∈N2(Ai) RD2(Ai) is the sum of RD between
Ai and all points in the neighborhood around Ai with k-nearest neighbors Nk(Ai). ||Nk(Ai)|| is number of
actual neighbors in the neighborhood. Therefore, the denominator in the above definition is the average of
reachability distances between Ai and all neighbors in the neighborhood of Ai.

Example (cont’d) Calculate local reachability density (LRD) based on the toy data used in previous
examples.

4.1.5 Local Outlier Factor (LOF) Score

The local reachability densities (LRD) found are compared to the local reachability densities of A’s nearest k
neighbors. LOF of Ai is the ratio of the average LRD in the neighborhood of Ai with K nearest neighbors to
the LRD of Ai, for i = 1, 2, · · · , n.

LOF (Ai) =

∑
Aj ∈Nk(Ai)

LRDk(Aj)

||Nk(Ai)||

LRDk(Ai)
.

To help understand the above formula, we illustrate how to calculate the LOF of A in the following figure
that contains a data set with 4 points. We choose k = 2 in the calculation.
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Figure 8: Figure 8. An example of calculating the local reachability density.

Figure 9: Figure 9. Illustration of calculating LOF score.
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LOF (A) =
LRD2(B)+LRD2(C)

||Nk(A)||

LRD(A) =
LRD2(B)+LRD2(C)

2
LRD(A)

Example (cont’d) Calculate local outlier Factor (LOF) based on the toy data used in previous examples.

Figure 10: Figure 10. Calculating LOF score based on the toy data.

4.2 Recap of LOF: Implication and Utilization
In anomaly detection, algorithms like the Local Outlier Factor (LOF) play a crucial role in identifying data
points that deviate significantly from the norm. In this subsection section, we’ll summarize the strengths,
limitations, and applications of LOF.

As illustrated in the previous subsection, LOF operates on the principle of local density estimation. Unlike
global outlier detection methods that consider the entire dataset’s characteristics, LOF focuses on the local
neighborhood of each data point. It measures how isolated a data point is with respect to its neighbors, thus
capturing anomalies that might be overlooked by traditional methods.

4.2.1 LOF Applications

Fraud Detection: LOF is widely used in financial institutions to detect fraudulent transactions. It can
identify unusual spending patterns or activities that deviate from regular customer behavior.

Network Security: In cybersecurity, LOF helps in identifying malicious activities or intrusions in network
traffic by flagging abnormal patterns or connections.

Healthcare Analytics: LOF aids in medical data analysis by spotting anomalous patient records or unusual
trends in health data, leading to early detection of diseases or abnormalities.

Manufacturing Quality Control: LOF can be applied in manufacturing processes to detect faulty products
or anomalies in production data, ensuring quality control and efficiency.

Predictive Maintenance: By identifying outliers in equipment sensor data, LOF enables predictive mainte-
nance in industries such as aviation, automotive, and manufacturing, reducing downtime and maintenance
costs.

4.2.2 LOF Strengths and Limitations

The method of LOF for anomaly detection has several strengths and limitations. We list a few of them in the
following.
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Strengths

• Robustness to Local Density Variations: LOF is effective in detecting outliers even in data sets with
varying local densities, making it suitable for complex and dynamic data.

• Scalability: It can handle large data sets efficiently, thanks to its local neighborhood-based approach,
which reduces computational complexity compared to global methods.

• Flexibility: LOF is adaptable to different types of data, including numerical, categorical, and mixed
data, making it versatile across various domains.

• Interpretability: The LOF scores provide interpretable insights into the degree of anomaly for each data
point, aiding in decision-making and anomaly prioritization.

Limitations

• Parameter Sensitivity: LOF performance can be sensitive to the choice of parameters, such as the
neighborhood size. Optimal parameter tuning is crucial for reliable results.

• Curse of Dimensionality: In high-dimensional spaces, LOF may encounter challenges due to the increased
sparsity and computational complexity. Pre-processing or dimensionality reduction techniques may be
necessary.

• Data Distribution Assumptions: LOF assumes that outliers are less dense than their neighbors. If this
assumption doesn’t hold, LOF may produce less accurate results.

• Outlier Definition: The definition of outliers may vary based on the application context. LOF identifies
anomalies based on local densities, which may not always align with domain-specific outlier definitions.
Practical Implementation of LOF

4.2.3 Steps for Implementing LOF

Data Preprocessing: Cleanse and preprocess the data, handling missing values, scaling numerical features,
and encoding categorical variables if needed.

Parameter Selection: Choose appropriate parameters such as the neighborhood size (k) and distance
metric (e.g., Euclidean distance) based on the data set characteristics and domain knowledge.

LOF Calculation: Compute the LOF scores for each data point using libraries or implementations available
in popular data science tools.

Threshold Setting: Determine a threshold for LOF scores to classify data points as outliers. This threshold
can be set empirically or using statistical methods like percentile-based approaches.

Visualization and Interpretation: Visualize the results using plots like scatter plots or histograms of
LOF scores. Interpret the outliers based on domain knowledge and business context.

4.2.4 Use of LOF Score

If a point has significantly lower density compared to its neighbors, it is likely to be an outlier. LOF Score
Calculation: The LOF score quantifies the degree of outlierness for each data point. Higher LOF scores
indicate a higher likelihood of being an outlier.

A value of approximately 1 indicates that the object is comparable to its neighbors. A value below 1 indicates
a denser region (which would be an inlier), while values significantly larger than 1 indicate potential local
outliers.

• LOF(k) ~ 1 means Similar density as neighbors,

• LOF(k) < 1 means Higher density than neighbors (Inlier),

• LOF(k) > 1 means Lower density than neighbors (Outlier)
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Note that, in practical applications, the actual cut-off LOF to be used to detect potential outliers is dependent
on particular applications and operational constraints.

4.2.5 An Example: Iris Data

Several R packages have a function to calculate LOF scores. We use lof() in {dbscan} to calculate LOF
scores of data points in the well-known iris data.

The R function lof() can calculate the LOF score in a high dimensional space. The original iris data has 4
numerical variables (sepal and petal widths and lengths). We will calculate the LOF scores based on these
variables (in 4-dimensional space).

To visualize the LOF score, we also perform a PCA and use the first two PCs (which account for about 95%
of the total variation) to calculate LOF scores.

A Cautionary Note on LOF Scores with PCA - The purpose of calculating LOF scores based on the
first two-component analysis is to visualize the outliers in a 2-dimensional plot. The original variables must
not be scaled in the PCA to obtain comparable LOF scores. The translation of the original variable will give
the same LOF score.
iris00 = iris[,-5]
lof.4d <- lof(iris00, minPts = 30) # minPts = k value, number of nearest neighbors
summary(lof.4d)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.9536 0.9830 1.0079 1.0689 1.0780 1.6917

log.iris = log(iris[,-5]) # drop the categorical variable in the original
# data set and transform all numerical to the
# log-scale

ir.pca <- prcomp(log.iris, center = TRUE, scale = FALSE)
# use the first two PCs to define a data frame for LOF
pca.iris = data.frame(ir.pca$x[, 1:2])
### Calculate the two LOF scores with the original variables and PCs respectively.
lof.pca <- lof(pca.iris, minPts = 30) # minPts = k value, number of nearest neighbors
lof.orig <- lof(log.iris, minPts = 30)
## 2D plot of LOF score based on PCs
plot(pca.iris, pch = "x", # point symbol

main = "LOF Based on PCA",
#asp = 1,
cex = 0.5) # aspect ratio - ratio of 'y/x'

points(pca.iris,
cex = (lof.pca-1)*1.5, # point size according to the LOF score
pch = 21,
col = "purple")

text(pca.iris[lof.pca > 1.8,],
labels = round(lof.pca, 1)[lof.pca > 1.8],
pos = 1, # 1, 2, 3 and 4 => below, left , above, and right
cex = 0.7,
col = "blue")

plot(lof.pca, lof.orig, pch ="x",
main = "LOF Scores Comparison: PCA vs Original Variable",
xlab = "PCA LOF Score",
ylab = "Original LOF Score",
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Figure 11: Figure 5. LOF scores based on the first 2 principal components.

cex = 0.6)
points(lof.pca[lof.pca > 1.8], lof.orig[lof.pca > 1.8],

pch = 21,
cex = lof.pca*1.5,
col = "purple")

text(lof.pca[lof.pca > 1.8], lof.orig[lof.pca > 1.8],
labels = round(lof.pca, 1)[lof.pca > 1.8],
pos = 1, # 1, 2, 3 and 4 => below, left , above, and right
cex = 0.7,
col = "blue")

The above two figures show that the LOF method identifies the same outliers based on the original four
variables (in the 4-dimensional feature space) and the first two PCs (2-dimensional space). No variable scaling
was used in the PCA.

5 Case-Study: Fraud Detection
Financial fraud imposes significant global losses annually. In 2023, losses from financial fraud were estimated
at approximately $485.6 billion worldwide. These losses stemmed from various scams, including payments
fraud, credit card fraud, and cyber-enabled schemes, with payments fraud alone accounting for the majority—
highlighting critical vulnerabilities in digital and financial systems.

Furthermore, the broader impact of financial crimes, such as money laundering and the funding of illicit

13



xxxx x

x

x
xx

x

xx

x

x

x

x
x

x

x
x

x

x

x

x

xx

x

x xxx

x

x

xx xx

x

xx

x

x

x

x

x

x
xxx xx

x x

x

xx x

x

x

x

x

x

x

x

x

xx

x
x x

xx xx
xx xxx

x

x

x

x

xx
x

x

x

x

x x

x

x

x

x x
xx

x

x

x

x
x

x
x

x

x

x
x

x

xx
x

x x
x

x

x x
x

x
x

x

x
x

x

xxx

x

x

x

x
x

x
x x

x
xx

xx

x

x

x

xx
x

x

x

1.0 1.2 1.4 1.6 1.8 2.0

1.
0

1.
2

1.
4

1.
6

1.
8

LOF Scores Comparison: PCA vs Original Variable

PCA LOF Score

O
rig

in
al

 L
O

F
 S

co
re 1.8

1.9

2

Figure 12: Figure 6: Scatter plot of LOF scores based on the original variables and the first 2 PCs.
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activities, was estimated at $3.1 trillion in 2023. This figure underscores the enormous scale of the issue and
its far-reaching economic consequences.

5.1 Working Data Set
The data set for this case study is a small portion (~ 4%) taken from publicly available synthetic data from
the Kaggle platform. The data set can be found from this (link). The original data set was split into 24
equal-sized subsets and uploaded to the GitHub repository of this course (link). The description of the data
can be found at here.
fraud = read.csv("https://pengdsci.github.io/STA551/w12/dataset/fraud2.csv")

To assess the performance of LOF, we use the feature variable isFraud to perform a supervised classification
analysis using LOF to detect fraudulent transactions. Note that the actual fraud rate of this data set is
72/(269928 + 72) ≈ 0.0002666667 = 0.027%. This is a typical imbalanced learning problem. The detection
rate based on random guessing is only 0.027%. Any models that have a detection rate greater than 0.027%
are worthwhile.

5.2 Motivation and Goals
A fraudulent transaction is considered an outlier. We can use LOF methods to assign a LOF score based on
a given k. A transaction with a LOF score greater than 1 can be considered to be an outlier. In this sense,
the LOF score of a transaction can be defined as a fraud score.

We have introduced several supervised algorithms including logistic regression, decision tree and BAGGING,
and neural network models. These algorithms are technically valid for fraud detection. The primary goal
of this case study is to use LOF scores to detect potential fraudulent transactions. isFraud is a variable
indicating the fraud status of the corresponding transactions. If LOF is associated with fraudulent
transactions, we would expect that transactions with high LOF scores are more likely to be
fraudulent.

Two major analytic tasks to be performed are

• Investigating the relative detection rate compared with the baseline random guess for a given k
(considered as a hyperparameter).

• Identifying the optimal k to define LOF scores that effectively characterize the outliers.

5.3 Methods
We will use numerical variables in the data to calculate the LOF scores for each record in the data set. To
assess the overall performance of fraud detection with LOF scores, we pick a sequence of potential LOF
cut-off scores that are greater than 1 and plot the LOF score against the relative detection improvement rate
compared with the baseline random guess rate which is defined by

fraud catching rate = Total Fraudulent Transactions with LOF > cutt-off
Total Number of Transactions with LOF > cut-off .

5.3.1 Distribution of LOF

The distribution of LOF scores is usually very skewed. To create a better visual representation, we truncate
the extremely large LOF scores. Next, we extract the LOF scores of each record in the data set with k = 70
and summarize the distribution in the following.
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lof.fraud.100 <- lof(fraud [, c(4, 6, 7, 9,10)], minPts = 100)
summary(lof.fraud.100)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.9540 0.9985 1.0201 1.1363 1.0926 199.0210

hist(lof.fraud.100[lof.fraud.100 < 5], breaks = 50, main = "LOF Distribution")

LOF Distribution
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5.3.2 Predictive Power of LOF Scores

In the following figure, we choose a sequence of TOF cut-offs and plot the relative improvement rate
against LOF scores to show the “performance of detection”.
## Choose a sequence of cut-offs of LOF scores
cut.lof = seq(1,5, length = 21)
##
lof.catching.rate = NULL
for (i in 1:length(cut.lof)){

ID = lof.fraud.100 > cut.lof[i]
isFraud = fraud$isFraud[ID]
lof.catching.rate[i] = sum(isFraud )/sum(ID)

}
##
defaultFraudRate = sum(fraud$isFraud)/length(fraud$isFraud)
rel.detect.rate = (lof.catching.rate-defaultFraudRate)/defaultFraudRate
##
par(mfrow=c(1,2))
plot( cut.lof, 100*lof.catching.rate, type = "l", col = "blue", lwd = 2,

xlab = "LOF Cut-off",
ylab = "LOF catching rate (%)",
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main = "LOF catching rate of fraud")
plot( cut.lof, rel.detect.rate, type = "l", col = "blue", lwd=2,

xlab = "LOF Cut-off",
ylab = "LOF and random catching rate ratio",
main = "LOF catching rate of fraud")

1 2 3 4 5

0.
0

0.
4

0.
8

LOF catching rate of fraud

LOF Cut−off

LO
F

 c
at

ch
in

g 
ra

te
 (

%
)

1 2 3 4 5

0
10

20
30

40

LOF catching rate of fraud

LOF Cut−off

LO
F

 a
nd

 r
an

do
m

 c
at

ch
in

g 
ra

te
 r

at
io

The above figures show that, with k = 100, the LOF-based fraud-catching rate is much higher than the
random guess. We can also sketch an ROC to assess the global performance in terms of catching rate.
#cutloff = seq(1,15, length = 20)
#pred.lof.100 = as.numeric(lof.fraud.00 > cut.lof[i])

category = as.character(fraud$isFraud)
ROCobj.lof <- roc(category, lof.fraud.100, levels=c("1", "0"),direction = ">")
##
sen.LOF = ROCobj.lof$sensitivities
fnr.LOF = 1 - ROCobj.lof$specificities

par(type="s")
plot(fnr.LOF, sen.LOF , type = "l", lwd = 2, col = "blue",

xlim = c(0,1),
ylim = c(0,1),
xlab = "1 - specificity",
ylab = "sensitivity",
main = "ROC Curves of LOF Detection")

segments(0,0,1,1, lwd =1, col = "red", lty = 2)
AUC = ROCobj.lof$auc
text(0.87, 0.20, paste("AUC = ", round(AUC,4)), col="darkred", cex = 0.7, adj = 1)
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AUC =  0.8434

The area under the ROC curve is about 0.84 indicating the good predicting power of LOF scores.

5.3.3 Tuning Hyperparameter k

The LOF defines local outliers. The LOF scores will be dependent on the value of k (the number of nearest
neighbors of every data point). For illustration, we will use three different k values for LOF scores and then
use ROC curves to compare the performance of LOF scores in anomaly detection. The previous k = 100 was
used in the previous subsection, we will choose k = 50 and 200 in the following.
lof.fraud.50 <- lof(fraud [, c(4, 6, 7, 9,10)], minPts = 50)
lof.fraud.200 <- lof(fraud [, c(4, 6, 7, 9,10)], minPts = 200)
lof.fraud.400 <- lof(fraud [, c(4, 6, 7, 9,10)], minPts = 400)

category = as.character(fraud$isFraud)
ROCobj.lof.50 <- roc(category, lof.fraud.50, levels=c("1", "0"), direction = ">")
ROCobj.lof.100 <- roc(category, lof.fraud.100, levels=c("1", "0"), direction = ">")
ROCobj.lof.200 <- roc(category, lof.fraud.200, levels=c("1", "0"), direction = ">")
ROCobj.lof.400 <- roc(category, lof.fraud.400, levels=c("1", "0"), direction = ">")
##
sen.LOF.50 = ROCobj.lof.50$sensitivities
fnr.LOF.50 = 1 - ROCobj.lof.50$specificities
##
sen.LOF.100 = ROCobj.lof.100$sensitivities
fnr.LOF.100 = 1 - ROCobj.lof.100$specificities
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##
sen.LOF.200 = ROCobj.lof.200$sensitivities
fnr.LOF.200 = 1 - ROCobj.lof.200$specificities
##
sen.LOF.400 = ROCobj.lof.400$sensitivities
fnr.LOF.400 = 1 - ROCobj.lof.400$specificities

par(type="s")
colors = c("#8B4500", "#00008B", "#8B008B", "#055d03")
plot(fnr.LOF.50, sen.LOF.50, type = "l", lwd = 2, col = colors[1],

xlim = c(0,1),
ylim = c(0,1),
xlab = "1 - specificity",
ylab = "sensitivity",
main = "ROC Curves of LOF Detection Comparison")

lines(fnr.LOF.100, sen.LOF.100, lwd = 2, lty = 2, col = colors[2])
lines(fnr.LOF.200, sen.LOF.200, lwd = 1, col = colors[3])
lines(fnr.LOF.400, sen.LOF.400, lwd = 1, col = colors[4])

segments(0,0,1,1, lwd =1, col = "red", lty = 2)
legend("topleft", c("LOF.50", "LOG.100", "LOF.200", "LOF.400"),

col=colors, lwd=c(2,2,1,1,1),
lty=c(1,2,1,1,2), bty = "n", cex = 0.7)

##
AUC.50 = ROCobj.lof.50$auc
AUC.100 = ROCobj.lof.100$auc
AUC.200 = ROCobj.lof.200$auc
AUC.400 = ROCobj.lof.400$auc
text(0.87, 0.25, paste("AUC.50 = ", round(AUC.50,4)), col=colors[1], cex = 0.7, adj = 1)
text(0.87, 0.20, paste("AUC.100 = ", round(AUC.100,4)), col=colors[2], cex = 0.7, adj = 1)
text(0.87, 0.15, paste("AUC.200 = ", round(AUC.200,4)), col=colors[3], cex = 0.7, adj = 1)
text(0.87, 0.10, paste("AUC.400 = ", round(AUC.400,4)), col=colors[4], cex = 0.7, adj = 1)
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LOG.100
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AUC.50 =  0.8225
AUC.100 =  0.8434
AUC.200 =  0.8564
AUC.400 =  0.8551

We can see from the above ROC curves that k = 200 produced the best AUC. This also implies that k as a
hyperparameter needs to be tuned based on given data.

5.4 Implementation LOF
There are several different ways of using LOF scores in actual applications. We have shown in the above
application that LOF can be used as a standalone detection algorithm. In fact, the LOF score also be used
as a new feature variable just like the cluster ID in any model and algorithm.

No matter how the LOF is used, the crucial step is to tune the hyperparameter k to obtain powerful
LOF scores before implementing it in any application. When LOF is used as a standalone algorithm for
anomaly detection, identifying the optimal cut-off LOF score for anomaly detection is crucial. However, the
optimal cut-off LOF score obtained through an analytic approach might not be the best because of potential
operational constraints. For example, model-generated suspicious fraudulent transactions need to be
verified by fraud analysts. If the optimal cut-off produces too many alerts (suspicious frauds), it may cost
more for the organization to hire more fraud analysts to verify all suspicious fraudulent transactions.
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