
An Overview of Commonly Used Unsupervised ML Algorithms

Cheng Peng

STA 551 Foundations of Data Science

Contents
1 Introduction 1

2 K-means Clustering 2
2.1 Optimal Number of Clusters Determination . 2
2.2 Steps for K-mean Algorithm . 4

2.2.1 Initialize Centroids. 4
2.2.2 Update Centroids . 4

2.3 Some Remarks on K-means . 4
2.4 Case Study . 5

3 Hierarchical Clustering 8
3.1 Types of Hierarchical Clustering . 8
3.2 Case Study I – Clustering with Two Features . 9

3.2.1 Pre-processing Operations for Clustering . 9
3.2.2 Hierarchical Clustering with R . 10
3.2.3 Determination Optimal Number of Clusters . 10
3.2.4 Extracting Cluster ID . 11

3.3 Case Study II: Multi-class Clustering . 12
3.4 Memory Usage of Clustering . 16

4 Dimensionality Reduction Algorithms 16
4.1 The Logic of PCA . 17
4.2 Case Study - Iris Data . 17

4.2.1 Fitting PCA model to Iris data . 17
4.2.2 Optimal number of PCs to be retained . 18
4.2.3 Extracting PC Scores . 19

1 Introduction
This note overviews the basic unsupervised machine learning algorithms (also known as knowledge discovery)
in which models are not supervised using a training data set. Instead, models themselves find the hidden
patterns and insights from the given data.

The goal of unsupervised learning is to find the underlying structure of the data set and group that data
according to similarities. Common algorithms used in unsupervised learning include clustering, anomaly
detection, neural networks, and approaches for learning latent variable models.

The following types of unsupervised machine learning algorithms are commonly used in practice.

1

• K-means Clustering
• Hierarchical Clustering
• Anomaly Detection
• Principal Component Analysis

There are many methods to calculate this distance information; the choice of distance measures is a critical
step in clustering. It defines how the similarity of two data points (x, y) is calculated and it will influence
the shape of the clusters. The choice of distance measures is a critical step in clustering. It defines how the
similarity of two data points (x, y) is calculated and it will influence the shape of the clusters.

https://github.com/pengdsci/STA551/blob/main/w08/img/w08-kMeans-gif.gif

Here are a few sites you check for these “distances”.

• https://elki-project.github.io/algorithms/distances
• https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6853338
• https://cran.r-project.org/web/packages/SimilarityMeasures/SimilarityMeasures.pdf

In the next few sections, we will describe each of these algorithms.

2 K-means Clustering
K-means algorithm is an iterative algorithm that partitions the data set into K pre-defined, distinct, and
non-overlapping subgroups (clusters) where each data point belongs to only one group. Data points within
each subgroup are similar while data points across the subgroups are “different** according to a selected
dissimilarity measure used in the algorithm.

In other words, k-means clustering consists of defining clusters so that the total intra-cluster variation
(known as a total within-cluster variation) is minimized. There are several k-means algorithms available.
The standard algorithm is to define the total within-cluster variation as the sum of squared (SS) distances
(Euclidean distances) between data points and the corresponding centroid. To be more specific, let xi be the
data point in cluster k, denoted by Ck and µk is the center of cluster Ck (i.e. the mean value of the points
when Euclidean distance is used). The within-cluster SS is defined by

W (Ck) =
∑

xi∈Ck

(xi − µi)2

Each observation (xi) is assigned to a given cluster such that the sum of squares (SS) distance of
the observation to their assigned cluster centers µk is a minimum.

We define the total within-cluster variation as follows.

TW =
k∑

k=1
W (Cl) =

k∑
i=1

∑
xk∈Ck

(xi − µk)2

The total within-cluster sum of square measures the compactness (i.e. goodness) of the clustering
and we want it to be as small as possible.

Two fundamental questions to answer are: (1) how many initial clusters should be selected; (2) how to choose
the initial “centers”.

K-means clustering algorithm works in the following three steps.

2.1 Optimal Number of Clusters Determination
Several algorithms can be used to find the optimal number of clusters. Elbow and Silhouette algorithms are
commonly used and are implemented in R.

2

https://github.com/pengdsci/STA551/blob/main/w08/img/w08-kMeans-gif.gif
https://elki-project.github.io/algorithms/distances
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6853338
https://cran.r-project.org/web/packages/SimilarityMeasures/SimilarityMeasures.pdf

Figure 1: Figure 2. illustration of cluster analysis.

Elbow Method

The Elbow method gives us an idea of what a good k number of clusters would be based on the sum of
squared distance (SSE) between data points and their assigned clusters’ centroids. We pick k at the spot
where SSE starts to flatten out and form an elbow. We’ll use the geyser dataset and evaluate SSE for different
values of k and see where the curve might form an elbow and flatten out.

Elbow is one of the most famous methods for selecting the right value of k. We also perform the hyper-
parameter tuning to choose the best value of k. The Elbow method is an empirical method to find out the
best value of k.

Silhouette Method

The Silhouette Method uses a similarity measure (Silhouette coefficient) that is defined in the following

Si = bi − ai

max {ai, bi}
,

where Si is the silhouette coefficient of the data point i; ai is the average distance between i and all the other
data points in the cluster to which i belongs, and bi is the average distance from i to all clusters to which i
does not belong.

We can plot the Silhouette coefficient against the pre-determined clusters k. The plot of the silhouette is
between −1 to 1.

A high average silhouette width indicates good clustering. The average silhouette method computes the
average silhouette of observations for different values of k. The optimal number of clusters k is the one that
maximizes the average silhouette over a range of possible values for k.

Observe the plot and choose the k value that is closer to 1 as the optimal number of clusters.

3

Figure 2: Figure 3. (a) A visual curve with an explicit elbow point. (b) A visual curve being fairly smooth
with an ambiguous elbow point.

2.2 Steps for K-mean Algorithm
There different versions of k-mean algorithms. The most commonly used are three: Lloyd, McQueen and
Hartigan-Wong. Lloyd algorithms is easy to understand. We will use it to illustrate the step of K-mean
clustering. R implemeted all three algorithms in the R function kmean().

2.2.1 Initialize Centroids.

Initialize centroids by first shuffling the data set and then randomly selecting K data points for the centroids
without replacement.

2.2.2 Update Centroids

Updating centroids is an iterative process:

1. Compute the sum of the squared distance between data points and all (initial) centroids. Assign each
data point to the closest cluster (centroid).

2. Compute the (updating) centroids for the clusters by taking the average of all data points that belong
to each cluster.

Keep iterating until there is no change to the centroids. i.e., the assignment of data points to clusters isn’t
changing.

The following figure illustrates how to find the updated centroids immediately after the initial centroids.

2.3 Some Remarks on K-means
1. K-means clustering assumes numerical features since the Euclidean distance is used to define similarity

measures.

2. K-Means clustering performs well only for a convex set of clusters and not for non-convex sets.

4

Figure 3: Figure 4. Updating centroids in the process of finding the final centroids

3. Recent development allows categorical feature variables with non-Euclidean distance.

4. The k-means algorithm does not guarantee finding the optimal solution. k-means is a fairly simple
sequence of tasks and its clustering quality depends a lot on two factors: the number of k clusters and
initial centroids.

2.4 Case Study
For illustrative purposes, we only use two numerical variables in a simple data set that is publically available
in Github https://raw.githubusercontent.com/satishgunjal/datasets/master/Mall_Customers.csv.
df = read.csv("https://raw.githubusercontent.com/satishgunjal/datasets/master/Mall_Customers.csv")
rename the two variables and then subset the data
names(df)[names(df)=="Annual.Income..k.."] = "AnnualIncome"
names(df)[names(df)=="Spending.Score..1.100."] = "SpendingScore"
clust.data = df[, c("AnnualIncome", "SpendingScore")]
scaled.data = as.data.frame(scale(clust.data)[,1:2])

distance = get_dist(scaled.data)
fviz_dist(distance, gradient = list(low = "yellow", mid = "orange", high = "darkred"), show_labels = FALSE)

The above heatmap indicates that different clusters exist in this data (based on the two numerical variables).

• The syntax of kmeans() is given in the following code chunk.
k2 <- kmeans(x = scaled.data,

centers = 2,
iter.max = 10,
nstart = 25,
algorithm = "Lloyd", #"Hartigan-Wong",
trace = FALSE)

• Determination of optimal class.

We use the elbow method to find the optimal number of clusters.

5

https://raw.githubusercontent.com/satishgunjal/datasets/master/Mall_Customers.csv

value

0

1

2

3

4

5

Figure 4: Figure 5: Heatmap representation of potential clusters

wss = NULL
K = 15
for (i in 1:K){

wss[i] = kmeans(scaled.data, i, 1)$tot.withinss
}

elbow plot
plot(1:K, wss, type ="b",

col= "blue",
xlab="Number of Clusters",
ylab = "WSS",
main = "Elbow Plot for Selecting Optimal Number of Clusters")

From the above elbow plot, it seems that the optimal number of clusters is 5. So select k - 5 hereafter.

• Cluster the data with 5 centroids

We will cluster the data into 5 groups and then add the cluster ID to the data. Since only two continuous
feature variables were used to cluster the data. After we added the cluster ID to the data, we used color
coding to make a scatter plot and view the clusters.

6

2 4 6 8 10 12 14

10
0

20
0

30
0

40
0

Elbow Plot for Selecting Optimal Number of Clusters

Number of Clusters

W
S

S

Figure 5: Figure 6: Elbow plot for optimal number of clusters.

k5 <- kmeans(x = scaled.data,
centers = 5,
iter.max = 10,
nstart = 25,
algorithm = "Lloyd", # "Hartigan-Wong",
trace = FALSE)

scaled.data$group = k5$cluster
Plot the clusters
Scatter plot
plot(scaled.data$AnnualIncome, scaled.data$SpendingScore,

pch = 19,
col = factor(scaled.data$group),
xlab ="Spending Score",
ylab = "Annual Income",
main = "Clustering Performance Visual Check")

Legend
legend("topright",

legend = levels(factor(scaled.data$group)),
pch = 19,

7

col = factor(levels(factor(scaled.data$group))))

−1 0 1 2 3

−
2

−
1

0
1

2

Clustering Performance Visual Check

Spending Score

A
nn

ua
l I

nc
om

e

1
2
3
4
5

Figure 6: Figure 7. Final cluster results: visual inspection

3 Hierarchical Clustering
In this section, we introduce one of the most popular clustering methods: ** Hierarchical Clustering **.
Hierarchical clustering is an alternative approach to k-means clustering for identifying groups in the dataset.
It does not require us to pre-specify the number of clusters to be generated as is required by the k-means
approach. Furthermore, hierarchical clustering has an added advantage over K-means clustering in that it
results in an attractive tree-based representation of the observations, called a dendrogram.

3.1 Types of Hierarchical Clustering
There are two types of hierarchical clustering: agglomerative and divisive.

• Agglomerative*: An agglomerative approach begins with each observation in a distinct (singleton)
cluster, and successively merges clusters until a stopping criterion is satisfied.

• Divisive: A divisive method begins with all patterns in a single cluster and performs splitting until a
stopping criterion is met.

As an example, we look at how agglomerative clustering works using five data points in the following figure.

8

Figure 7: Figure 8. Illustration of types of hierarchical clustering.

3.2 Case Study I – Clustering with Two Features
We still use the same data set that we used in the previous case study of K-means clustering but will include
age variable in the data frame for following hierarchical clustering.
df = read.csv("https://pengdsci.github.io/STA551/w11/Mall_Customers.csv")
Rename the two variables and then subset the data
names(df)[names(df)=="Annual.Income..k.."] = "AnnualIncome"
names(df)[names(df)=="Spending.Score..1.100."] = "SpendingScore"
hierarch.data = df[, c("Age", "AnnualIncome", "SpendingScore")]

3.2.1 Pre-processing Operations for Clustering

There are a couple of things you should take care of before starting.

Scaling is imperative that we normalize the scale of feature values in order to start with the clustering
process. This is because each observation’s feature values are represented as coordinates in n-dimensional
space (n is the number of features) and then the distances between these coordinates are calculated. If these
coordinates are not normalized, then it may lead to false results. R has functions scale() and normalize().

Missing Value imputation is also important to deal with missing/null/inf values in your data set beforehand.
There are many ways to deal with such values, one is to either remove them or impute them with mean,
median, mode, or use some advanced regression techniques. R has many packages and functions to deal with
missing value imputations like impute().

9

Figure 8: Figure 9. Illustration of steps of agglomerative hierarchical clustering.

3.2.2 Hierarchical Clustering with R

There are different functions available in R for computing hierarchical clustering. The commonly used
functions are:

• hclust() [in stats package] and agnes() [in cluster package] for agglomerative hierarchical clustering
(HC).

• diana() [in cluster package] for divisive HC.
scales.hierarch = as.data.frame(hierarch.data)
distance <- dist(scales.hierarch, method = "euclidean")
Hierarchical clustering using Complete Linkage
hc1 <- hclust(distance, method = "complete")
Plot the obtained dendrogram
plot(hc1, cex = 0.6, labels = FALSE, hang = -1, xlab = "", main = "Dendrogram: hierarchical clustering")
rect.hclust(hc1, k = 5, border = 2:9)

Figured this out by coloring the labels white to the background
avg_dend_obj <- as.dendrogram(hc1)
labels_colors(avg_dend_obj) <- "white"
plot(avg_dend_obj, cex = 0.6,

labels = FALSE,
hang = -1,
xlab = "",
ylab= "Height",
main = "Dendrogram: hierarchical clustering: No X-Labels")

rect.hclust(hc1, k = 5, border = 2:9)

3.2.3 Determination Optimal Number of Clusters

The determination of the optimal number of clusters is an important and challenging problem. In hierarchical
clustering, different similarity measures impact the number of optimal clusters. We will not discuss this
topic in detail. To know more about this topic, you are referred to the following article with examples in R
https://www.jstatsoft.org/article/view/2194/798.

We can use the same elbow and silhouette methods to plot.

10

https://www.jstatsoft.org/article/view/2194/798

0
50

10
0

15
0

Dendrogram: hierarchical clustering

hclust (*, "complete")

H
ei

gh
t

Figure 9: Figure 10. Dendrogram: hierarchical clustering

fviz_nbclust(scales.hierarch, FUN = hcut, method = "wss")

fviz_nbclust(scales.hierarch, FUN = hcut, method = "silhouette")

3.2.4 Extracting Cluster ID

The above elbow plot indicates that choosing 4 clusters is appropriate. Next, we perform a 4-cluster analysis
and extract the cluster ID to add them to the data frame. This cluster ID could be used as a new
feature variable in subsequent modeling.
hc4 <- hclust(distance, method = "complete")
group = cutree(hc4, k = 6)
scales.hierarch$group = group
##
plot(scales.hierarch$AnnualIncome, scales.hierarch$SpendingScore,

pch = 19,
col = factor(scales.hierarch$group),
xlab ="Spending Score",
ylab = "Annual Income",
main = "Hierarchical Clustering Performance Visual Check")

11

Dendrogram: hierarchical clustering: No X−Labels

H
ei

gh
t

8 12 20 2 4 6 14 16 18 10 22 24 38 32 36 40 34 42 26 30 1 5 17 21 3 7 15 9 11 13 31 33 23 25 35 41 43 45 37 39 19 27 29 47 51 57 54 64 75 81 74 65 73 61 71 58 63 68 10
8

11
9 99 90 10
2 93 97 87 10
5

11
8

12
0 91 10
3 83 11
1

10
7

11
0

10
9

11
7 28 46 44 52 62 66 69 76 79 85 88 48 49 50 70 53 59 14
3

12
5

13
3 92 10
1

10
6

11
2

10
0

11
4

11
5

11
6 96 98 10
4

12
1 55 60 56 72 80 84 86 78 67 77 95 94 11
3

12
2

12
3 82 89 20
0

19
6

19
8

15
4

13
0

13
2

15
8

14
8

16
0

12
6

14
0

13
4

13
8

15
2

12
4

12
8

17
6

16
8

17
4

16
4

14
2

14
6

16
2

14
4

15
0

13
6

15
6

18
8

19
2

17
0

16
6

17
2

17
8

19
4

18
6

19
0

18
0

18
2

18
4

19
3

19
9

19
5

19
7

14
5

16
3

13
5

13
9

15
7

15
9

17
1

17
3

19
1

18
1

18
5

17
5

17
7

17
9

18
7

18
3

18
9

12
9

14
1

13
1

13
7

15
5

15
1

15
3

14
9

16
7

16
9

12
7

14
7

16
1

16
5

Figure 10: Figure 11. Dendrogram: hierarchical clustering: No X-Labels

Legend
legend("topright",

legend = levels(factor(scales.hierarch$group)),
pch = 19,
col = factor(levels(factor(scales.hierarch$group))))

3.3 Case Study II: Multi-class Clustering
The Iris Dataset contains four features (length and width of sepals and petals) of 50 samples of three species
of Iris (Iris setosa, Iris virginica, and Iris versicolor). These measures were used to create a linear discriminant
model to classify the species. The dataset is often used in data mining, classification, and clustering examples
and to test algorithms.

This 100-year-old data set has been included in the R base package. The first few records of the data set are
displayed in the following table.

12

1e+05

2e+05

3e+05

1 2 3 4 5 6 7 8 9 10
Number of clusters k

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

Optimal number of clusters

Figure 11: Figure 12. Elbow plot: Optimal number of clusters

pander(head(iris))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5 3.6 1.4 0.2 setosa

5.4 3.9 1.7 0.4 setosa

We use k-means method to perform cluster analysis on the iris data with the four numerical feature
variables.
myClusteredIris = iris
We start with 3 clusters since we know there are 3 species in the data.
In practice, we need relatively try different numbers of clusters and then
use the elbow plot to determine the best number of clusters.
km.iris <- kmeans(x = myClusteredIris[, -5] , centers = 3)
clust.ID <- km.iris$cluster # extracting cluster IDs

13

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Optimal number of clusters

Figure 12: Figure 13. Silhouette plot: Optimal number of clusters

table(clust.ID) # frequency of clusters

clust.ID
1 2 3
50 62 38

Since this clustering task involves 4 numerical feature variables, we cannot create a 2D plot to show the
clustering performance with all four original feature variables. However, we can so-called PCA (to be discussed
in the next section) to create two new feature variables and then plot the new features to show the performance
of the clustering algorithm.
clusplot(iris[, -5],
clust.ID,
lines = 0,
shade = TRUE,
color = TRUE,
labels = 1,
plotchar = FALSE,
span = TRUE,
main = paste("Clusters of Iris Flowers")

14

20 40 60 80 100 120 140

0
20

40
60

80
10

0

Hierarchical Clustering Performance Visual Check

Spending Score

A
nn

ua
l I

nc
om

e
1
2
3
4
5
6

Figure 13: Figure 14. Visual check the resulting clusters obtained from agglomerative hierarchical clustering.

)

15

Figure 14: Figure 15. Iris data set: variables illustration - pedal and sepal

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Clusters of Iris Flowers

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

3.4 Memory Usage of Clustering
One of the potential issues in clustering analysis is the use of memory. If the data size is too large,

4 Dimensionality Reduction Algorithms
Like clustering methods, dimension reduction seeks and explores the inherent structure in the data, but in
this case in an unsupervised manner or to summarize or describe data using less information.

This can be useful to visualize high-dimensional data or to simplify data which can then be used in a
supervised learning method. Many of these methods can be adapted for use in classification and regression.
The following are the frequently used algorithms.

• Principal Component Analysis (PCA)

16

• Linear Discriminant Analysis (LDA)
• Quadratic Discriminant Analysis (QDA)
• Independent Component Analysis (ICA)

In this section, we introduce the most commonly used PCA.

4.1 The Logic of PCA
We use a two-variable animation as an example to illustrate the idea of principal component analysis (PCA).

https://github.com/pengdsci/STA551/blob/main/w08/img/w08-PCA-Animation-01.gif

The above animated graph shows that two or more numerical feature variables are highly correlated, the
PCA can be used to aggregate the information in the correlated feature variables by transforming them into
a set of uncorrelated new feature variables such that the majority of the total information is captured by
the first few new feature variables.

Figure 15: Figure 17. Graphical interpretation of PCA with two correlated variables

4.2 Case Study - Iris Data
We have used the well-known Iris Data set in clustering algorithms. The data set has 4 correlated numerical
variables(sepal width and length, petal width and length) and a categorical variable. The four variables
measure the size of the flowers. We use PCA to see whether reducing the number of feature variables for
related modeling.

4.2.1 Fitting PCA model to Iris data

We want to PCA method to reduce the dimensions from 4 (numerical variables) to a smaller number. The R
function prcomp() to the factor loadings associated with the four numerical variables.
log.iris = log(iris[,-5]) # drop the categorical variable in the original

data set and transform all numerical to the

17

https://github.com/pengdsci/STA551/blob/main/w08/img/w08-PCA-Animation-01.gif

log-scale
ir.pca <- prcomp(log.iris, center = TRUE, scale = TRUE)
summary(ir.pca)[6] # use the command to explore the possible information

available in the output of the summary.

In the above R function, three arguments are explained in the following.

log.iris = log of the four variables
cater = TRUE, this means the variables are centered, i.e., you move the origin of the original coordinate system to the center of the data cloud.
scale = TRUE, divide the difference between the value of each variable and its mean by the standard deviation of the corresponding variable.

Next, we find the factor loading of the above fitted PCA. We can write an explicit system of linear
transformation by using the loadings.
kable(round(ir.pca$rotation, 2), caption="Factor loadings of the PCA")

Table 2: Factor loadings of the PCA

PC1 PC2 PC3 PC4
Sepal.Length 0.50 -0.45 0.71 0.19
Sepal.Width -0.30 -0.89 -0.33 -0.09
Petal.Length 0.58 -0.03 -0.22 -0.79
Petal.Width 0.57 -0.04 -0.58 0.58

The explicit expression of the predictive system of PC is given by

PC1 = 0.50Sepal.Length − 0.30Sepal.Width + 0.58Petal.Length + 0.57Petal.Width

PC2 = −0.45Sepal.Length − 0.89Sepal.Width − 0.03Petal.Length − 0.04Petal.Width

PC3 = 0.71Sepal.Length − 0.33Sepal.Width − 0.22Petal.Length − 0.58Petal.Width

PC4 = 0.19Sepal.Length − 0.09Sepal.Width − 0.79Petal.Length + 0.58Petal.Width

The magnitude of factor loadings indicates the amount of information that original variables contribute to the
corresponding principal components. For example, the absolute value of loadings associated with petal width
and length and sepal length in PC1 is greater than or equal to 0.5. We can simply call PC1 the size of iris
flowers. Similarly, sepal length and width are major contributors to PC2, we can name PC2 as sepal size.

4.2.2 Optimal number of PCs to be retained

The object of PCA is to reduce the dimension without losing a significant amount of information. In PCA,
we look at how much total variation is captured by each principal component. Most of the libraries that are
capable of performing PCA automatically rank the PCA based on the variation captured by each principal
component.

The following summary table gives the importance of the principal components.
kable(summary(ir.pca)$importance, caption="The importance of each principal component")

Table 3: The importance of each principal component

PC1 PC2 PC3 PC4
Standard deviation 1.712458 0.9523797 0.3647029 0.165684
Proportion of Variance 0.733130 0.2267600 0.0332500 0.006860
Cumulative Proportion 0.733130 0.9598900 0.9931400 1.000000

18

From the above table, we can see that the first PC explains about 73.33% of the variation. But we first two
principal components explain about 96% of the total variation. In the data analysis, you only need to use the
first two PCs that lose about 4% of the information.

We can also make a scree plot as a visual tool to show the number of principal components to retain for
future analysis.
screeplot(ir.pca,

type = "lines",
main = "Scree Plot of PCA Iris Flower Sizes")

Scree Plot of PCA Iris Flower Sizes

V
ar

ia
nc

es

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 2 3 4

Figure 16: Figure 18. Scree plot of PCA on Iris Data

Note that the vertical axis in the above scree plot uses the variances of PCs. The standard deviation was
used in the above summary table.

4.2.3 Extracting PC Scores

The predictive principle scores are values of the newly transformed variables. We can choose the first few
principal components to use as response variables to do relevant modeling.

The command ir.pcs$x extracts the PC scores from the PCA procedure. These scores are the values of the
new transformed variables. They can be used as response or predictor variables in statistical models. The
following table shows the

19

kable(ir.pca$x[1:15,], caption = "The first 15 PC scores transformed from the original variable. In the analysis, you want to either the first PC or the first two PCs.")

Table 4: The first 15 PC scores transformed from the original
variable. In the analysis, you want to either the first PC or the first
two PCs.

PC1 PC2 PC3 PC4
-2.406639 -0.3969554 0.1939647 0.0047795
-2.223539 0.6901804 0.3500015 0.0488684
-2.581105 0.4275418 0.0188976 0.0499095
-2.450869 0.6860074 -0.0687460 -0.1496465
-2.536853 -0.5082516 0.0293226 -0.0400482
-1.841495 -1.2899381 -0.2527683 0.1638906
-2.479490 0.1011323 -0.4974043 0.1227590
-2.348593 -0.1569003 0.1360186 -0.0954982
-2.535948 1.2477681 -0.1118812 -0.0754686
-2.625580 0.5074073 0.6594737 -0.4732591
-2.252707 -0.9305324 0.3266434 -0.0450709
-2.431184 -0.0290417 -0.0929138 -0.2368403
-2.697278 0.7816300 0.6575035 -0.3883884
-3.325521 1.1499290 0.1948436 -0.2162823
-2.380613 -1.6326568 0.5878310 0.2993832

As the final step, we rename the two PCs and then add the two new variables to the original data set for
future analysis. Since PC1 captures variation of both sepal and pedal, we rename PC1 as iris.size. Similarly,
we rename PC2 as sepal.size.
my.final.iris.data = iris
my.final.iris.data$iris.size = ir.pca$x[, 1]
my.final.iris.data$sepal.size = ir.pca$x[, 2]
write the final data set to a local folder
write.csv(my.final.iris.data, file = "C:\\Users\\75CPENG\\OneDrive - West Chester University of PA\\Desktop\\cpeng\\WCU-Teaching\\2023Summer\\STA551\\w08\\Final-Iris-Data.csv")

The following screenshot shows the final data file was saved in a local folder and the two renamed principal
components were added to the final data set.

Figure 17: Figure 19. Screenshot of the final iris data set with new variables defined based on the principal
components

20

	Introduction
	K-means Clustering
	Optimal Number of Clusters Determination
	Steps for K-mean Algorithm
	Initialize Centroids.
	Update Centroids

	Some Remarks on K-means
	Case Study

	Hierarchical Clustering
	Types of Hierarchical Clustering
	Case Study I – Clustering with Two Features
	Pre-processing Operations for Clustering
	Hierarchical Clustering with R
	Determination Optimal Number of Clusters
	Extracting Cluster ID

	Case Study II: Multi-class Clustering
	Memory Usage of Clustering

	Dimensionality Reduction Algorithms
	The Logic of PCA
	Case Study - Iris Data
	Fitting PCA model to Iris data
	Optimal number of PCs to be retained
	Extracting PC Scores

