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Abstract—Anomaly detection (AD) use within the network
intrusion detection field of research, or network intrusion AD
(NIAD), is dependent on the proper use of similarity and distance
measures, but the measures used are often not documented in
published research. As a result, while the body of NIAD research
has grown extensively, knowledge of the utility of similarity and
distance measures within the field has not grown correspondingly.
NIAD research covers a myriad of domains and employs a diverse
array of techniques from simple k-means clustering through ad-
vanced multiagent distributed AD systems. This review presents
an overview of the use of similarity and distance measures within
NIAD research. The analysis provides a theoretical background in
distance measures and a discussion of various types of distance
measures and their uses. Exemplary uses of distance measures
in published research are presented, as is the overall state of the
distance measure rigor in the field. Finally, areas that require
further focus on improving the distance measure rigor in the NIAD
field are presented.

Index Terms—Computer networks, anomaly detection, intru-
sion detection, machine learning, distance measurement.

I. INTRODUCTION

HE GOAL of Network Intrusion Detection System (NID)

is to automate the process of detecting when intrusions
are occurring in a network. In a more general sense, intrusion
detection can be framed as a subproblem within the network
anomaly detection problem: determine whether traffic is nor-
mal (good) or anomalous (bad). Automated systems which
discriminate between normal and anomalous often use some
form of machine learning techniques such as classification or
clustering to distinguish normal from abnormal traffic. At the
heart of these systems is a comparison between the model of
normal and the model of anomalous. These comparisons often
rely on the ability to measure similarity or distance between
a target and a known type, in order to determine whether to
declare a new target anomalous or not. Thus, the efficacy of
many anomaly detection systems (and many Network Intrusion
Detection System (NIDS)) depend on the distance or similarity
measures selected, and how they are used.

Manuscript received February 23, 2013; revised October 17, 2013 and
April 1, 2014; accepted June 7, 2014. Date of publication July 11, 2014; date of
current version March 13, 2015. This work was supported in part by the AFIT
Center for Cyberspace Research (CCR).

D. J. Weller-Fahy and B. J. Borghetti are with the Department of
Electrical and Computer Engineering, Air Force Institute of Technology,
Wright-Patterson Air Force Base, Dayton, OH 45433 USA (e-mail: dave@
weller-fahy.com; brett.borghetti @afit.edu).

A. A. Sodemann is with the Department of Engineering, College of Technol-
ogy and Innovation, Arizona State University, Mesa, AZ 85212 USA (e-mail:
angela.sodemann @ gmail.com).

Digital Object Identifier 10.1109/COMST.2014.2336610

Unfortunately, much of the published work on NID fails to
provide adequate detail on the distance and similarity measures
used in the research. In many cases, distance measures are not
mentioned. As a result, future research will have difficulty in
replicating or comparing results to previous work. It is also
difficult to explore the tradespace of distance measure selection
when it is poorly documented in the research.

Some authors do present details on the distance measures
used, and some even go as far as comparing performance across
several choices of distance measures. We present these publica-
tions as exemplars in the field and make recommendations on
what distance-measure details authors should include in their
publications to improve research transparency, duplicability
and comparability.

To provide a comprehensive review of how measures are
applied to Network Intrusion (NI) datasets within NID research,
this work examines how well the measures are identified, types
of distance measures used within the field, and how they are
used. The remainder of this paper is organized as follows. In
Section II several examples of other surveys of distance measure
use, both within and outside of the field of anomaly detection
are discussed. Section III presents a primer on classification,
clustering and anomaly detection, focusing on the importance
of distance measures within the computational framework of
machine learning. In Section IV we provide a detailed tutorial
on the theory of distance measures, the types of measures
researchers use, and a comparison of these measures. Section V
provides a review of the publications using distance measures
during the feature selection, classification, and clustering
aspects of anomaly detection. We present lessons learned from
the literature in Section VII and a conclusion in Section VIII.

II. RELATED WORK

There have been many surveys of the field of Anomaly De-
tection (AD), including those which recommend different tech-
niques for specific applications. In particular, Chandola et al.
[1] provide a comprehensive review of the AD field, organized
by the methods (e.g., statistical or classification) used to detect
anomalies. While thorough, their approach is based on the type
of detection used in the research rather than the type of distance
measures used during detection. This work should provide a
complementary look at the field of AD by providing a guide to
how distance and similarity measures have been used.

Within the field of Network Intrusion (NI) datasets the clos-
est work to this is by Chmielewski and Wierzchon [2] which
examines the problems inherent in using the /,-metric (defined
in (5), where p = r > 1), fractional [,-distance (defined in (5),
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where 0 < p =r < 1), and cosine similarity (defined in (35))
to measure the distance between different samples of high-
dimensional data. Through experimentation using differing val-
ues of p on the [,,-metric, and using the resulting distance in an
application of negative selection to a NI dataset, they conclude
that values of p on the interval [0.5, 1.0] should provide an
improvement in detection rate compared to other values.

Outside the field of NI datasets the closest work to this is by
Cha [3], and provides a syntactic and semantic categorization
of distance and similarity measures as applied to probability
distribution functions, as well as an analysis of the correlation
between different measures using clustering and presented in
hierarchical clusters. While not a review of how the measures
are used, Cha’s work is a useful reference for distance measures
with an interesting partitioning based on how well the distance
measures correlate to each other. A similar work with different
intent by Deza and Deza [4] provides a comprehensive enumer-
ation of the main distance measures used within a variety of
different fields. The cross-disciplinary manner in which the list
of distance measures is treated is especially useful when trying
to identify measures used in published works, as synonyms and
similar formulations are referenced throughout.

In areas not directly related to measuring difference and
similarity in multi-dimensional datasets, but which may be
useful in examining multi-dimensional datasets, there are other
significant works. Staab [5] examines the relationships between
ontologies and similarity measures, especially in light of the use
of measures within logical reasoning systems. Cunningham [6]
develops a useful structure for reasoning about which similarity
measures to use when first examining a problem, by providing
a taxonomy of similarity mechanisms. Chung ez al. [7] develop
a novel measure of security for nodes within a cloud system.
Many factors including number, vulnerability, and exploitabil-
ity of each virtual machine are used in calculating the virtual
machine security index, and then in selecting the counter-
measure for the particular attack.

III. PRIMER ON CLASSIFICATION, CLUSTERING AND
ANOMALY DETECTION

In Network Intrusion Anomaly Detection (NIAD), the goal
is to determine whether or not a specific observation(activity
on the network) is anomalous. Anomaly detection requires
labeling observations. Throughout the field of Network In-
trusion Detection (NID) research there are subtle differences
between the terms used when referring to the different phases
of Anomaly Detection (AD). This primer provides explanations
of the phases of a NIAD system, and definitions of the terms
used within those phases.

e Observation: A single entity of data. In Network Intrusion
(NI), an entity could be a computer network data packet,
or the status of a particular server at a specific time.

e Feature: A particular type of information. Observations
generally have several features. In a Network Intrusion
Detection System (NIDS), features could include packet
length, destination IP address, and time-stamp.

e Dataset: A collection of observations, each containing
values for each of the features. Often a dataset is expressed

in matrix form with the rows representing observations,
and the columns representing features.

e Preprocessing: Any manipulation of the dataset required
to allow the researchers’ AD tools to operate on the
dataset. Preprocessing is presumed to have no effect on
the outcome of the experiment. For example, conversion
from the comma-separated-value format to a database
table within a relational database may be required, leaving
the values of the features within the dataset unchanged.

e Transformation: Any change applied to the data with
the purpose of scaling, normalizing, or weighting the
data prior to its use. While the values of the features
are changed, the number of features and ordering of the
feature values are preserved. For example, some labeling
methods are more effective if the observations being la-
beled are normalized to make all feature values lie between
0 and 1 prior to labeling.

e Feature generation: Any creation of new features based
on original or derived datasets. For example, conversion
of a feature with seven possible nominal values to seven
binary features, or development of a new feature which
is the square root of the sum of the squares of two other
features.

» Selection: An operation which uses only a subset of all
available features or observations for use in labeling.

e Supervised Method: A method that requires training using
labeled training examples (the training dataset), prior to
executing the trained system on unlabeled observations.
The labeled training examples may be hand-labeled by the
researcher, or may be the output of some previously run
process.

e Unsupervised Method: A method that does not require
training prior to execution on unlabeled observations.

e Classification: The act of labeling each observation in the
data as being a member of a particular class. Most methods
of classification are supervised.

e Clustering: Partitioning observations into groups based
on similarity. Often clustering is unsupervised: the group
labels are selected after the groupings are generated.

During AD, the labeling process which uses transformation,
feature generation, selection, and classification or clustering
often depends on distance measures between feature values of
two or more observations in the dataset. For example, feature
generation may require Euclidean distance to generate a new
feature from two others. Clustering depends on some notion
of distance in order to determine which observations are close
to each other in a space relevant for anomaly detection. Since
distance measures are so important for AD, we discuss them in
detail in the following section.

IV. DISTANCE MEASURES
A. Theory of Distance Measures

This paper examines the use of distance and similarity mea-
sures as used in Network Intrusion Detection (NID). There are a
set of fundamental definitions of distance measures as identified
widely in the mathematical literature [4]. The definition of a
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distance measure includes three requirements. A fourth require-
ment establishes a sub-category of distance measures called
distance metrics. To define these requirements, we will use
the function dist() which takes as input two distinct variables
A and B, and returns the value of the distance. Then, the
requirements for a distance measure are as follows:

1) Non-negativity: The distance between A and B is always
a value greater than or equal to zero.

dist(A,B) >0 (1)

2) Identity of indiscernibles: The distance between A and B
is equal to zero if and only if A is equal to B.

dist(A,B) =0iff A= DB )

3) Symmetry: The distance between A and B is equal to the
distance between B and A.

dist(A, B) = dist(B, A) 3)

Distances which conform to at least these three require-
ments are known as distance measures. Those distance
measures which also satisfy one additional constraint also
qualify as distance metrics:

4) Triangle inequality: Considering the presence of a third
point C, the distance between A and B is always less than
or equal to the sum of the distance between A and C and
the distance between B and C. This requirement is also
known as the triangle inequality.

dist(A, B) < (dist(A,C) + dist(B, () 4)

Although distance measures are generally thought of as
measures to be applied to points in physical 3D space, distance
measures can also be applied to multi-dimensional data that
may not represent locations in space. This allows the applica-
tion of distance metrics to such non-spatial data as commonly
found in NID applications. Additionally, there are methods for
comparing the difference between two points which do not
satisfy even the first three requirements. These methods do
not qualify as distance measures, but are referred to instead as
similarity measures. Next, we examine the measures that have
been used in recent NID literature.

B. Types of Measures

In examining the types of distance measures used within the
NI field, it is useful to consider distance measures as part of
distinct families or categories. The families selected for this
work are among those enumerated in the, “Encyclopedia of
Distances”, by Deza and Deza [4]. As there is no definitive
taxonomy within the NID field, the measures and indexes
examined will be ordered by their relationship to families of
measures.

1) Power Distances: Power distances are distance measures
which use a formula mathematically equivalent to the power

(p, r)-distance formula in (5).

<Z s — ym) (5)
1=1

Power (p,r)-distance measures the distance between two
vectors = and y of length n. This category includes sev-
eral of the most common distance measures, including the
Euclidean distance and the Manhattan distance. Although typ-
ically thought of as a physical distance between two locations
in 3-dimensional space, these types of distances can be applied
to vectors of any dimensionality, so long as the type of data
is numerical. The particular distance measure indicated by
this category is determined by the values of p and r. For
example, where p = r = 2 the power (p, r*)-distance defines the
Euclidean metric, and where p = r > 1 defines the [,-metric.
Other values of p and r give other metrics. For 0 < p=1r < 1
the power (p, r)-distance is known as the fractional [,,-metric.

To provide some intuition about what different p and r values
would mean when measuring the distance between two points,
Fig. 1 shows Voronoi diagrams [8] constructed using the power
(p, r)-distance while varying the value of p and r. In Fig. 1,
the shaded regions indicate the complete set of points for which
the region’s seed point (shown as a black dot) is closer than
any other region’s seed point. This type of diagram is useful
for visualizing the discrepancy between our intuitive concept of
physical distance and the concept of distance according to other
distance measures. Fig. 1 shows that power distances other
than Euclidean do not necessarily match our intuitive under-
standing of physical distance. In the context of NID, Weighted
Euclidean distance can be used as a dissimilarity measure.
The difference between weighted and unweighted Euclidean
distance is the addition of a weight vector (w) of length n to
the formula in (5).

Other distances related to the power (p, r) distance can also
be used for NID, including the Mahalanobis distance and the
Heterogeneous Distance Function. The Mahalanobis distance
[9] is defined as shown in (6) [4]. Within (6), = and y are
vectors which each have n elements, A is a positive-definite
matrix (usually the covariance matrix of = and y), det A is the
determinant of A, and T indicates the transposition operation.

lo = ylla = \/(det A)& (z — ) A1 @ — )T (6)

A simplified version of Mahalanobis distance developed by
Wang and Stolfo [10] can be useful for quick computations
during heavy computational loads required in high-throughput
environments. The simplified measure, m,, ., is defined in (7)
where z is a vector containing all the dimensions of a single ob-
servation, j is the vector representing the center of mass of all
data observations, n is the number of elements in = and x, and
d(x;, ;) is the difference between the ith element of x and p.

n

d(@i, pi
() = 3 A1) )

i=1
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Fig. 1.

The Heterogeneous Distance Function (H(x,y)) [11] is
formulated as follows, where x and y are vectors of m elements
that come from datasets X and Y, respectively. First, the dis-
tance between elements containing continuous values is defined
in (8), where o is the variance of the jth attribute of dataset X.

daig(xj,y;) = (®)

Next, the distance between elements containing discrete val-
ues is defined in (9) where IV; . is the number of records in
which the value of the jth attribute is ;, N; . ; is the number

of records in which the value of the jth attribute is x; and the
class is 7, and k is the number of output classes.

k
dyam (5, y;) Z ““— N““ ©)
_ 1Y

As continuous and discrete distances are now defined, the
conditional distance can be defined. Note the formulation in
(10) accounts for missing attributes by providing a value where
one or the other attribute is missing (x; or y;).

1, .Z‘j oryj

dj(zj,y;) = {dvdm(ﬂfj,yj), x5, discrete
daige(z5,v5), ;,y; continuous

(10)

Finally, the heterogeneous distance function can be defined,
which uses a modification of power (p, r)-distance where |z; —
y;| is replaced by the conditional distance defined in (10),
d;(z;,y;), resulting in (11).

H(z,y) = (11

2) Distances on Distribution Laws: The second type of
measure, distances on distribution laws, describes those mea-

Voronoi diagrams using power (p, 7)-distance with p = r = (2,1, 0.75) (from left to right).

sures based on the probability distribution of the dataset. Those
include most forms of entropy, as well as conditional proba-
bility distributions. These distance measures are based upon
distribution laws, and apply to probability distributions over
variables with the same range.

One of the most common distance measures within this
category is the Bhattacharya coefficient [4], which can be used
to rank features according to the ability of each feature to
distinguish one class from the others [12]. The Bhattacharya
coefficient is shown in (12), where P; and P» are probability
distributions over the domain X, p;(z) is the probability of
occurring in Py, and ps(x) is the probability of = occurring
in P 2.

p(Pr, P) =

Z Vpi(z)p2(z

reX

(12)

Another distribution law distance is the y2-distance. Equa-
tion (13) is standard y2-distance, where = and y are vectors of
length n, p(x;) is the probability of the occurrence of the ith
element of x, and p(y;) is probability of the occurrence of the
ith element of y.

13)

A modified y2-distance [13] can sometimes be useful for
NID use, to measure the distance among rows and columns in
a correspondence matrix between the original network data and
generated datasets. The modified version proceeds as follows:
Assume F is an m X n matrix, as shown in (14) at the bottom
of the next page, with coordinates in each element (instead of
values) for clarity. Each pair of vectors to be compared are
either column or row vectors, but both must have the same
orientation. Each column vector is length m — 1, and each row
vector is length n — 1. The nth element of each row contains
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the sum of the values in elements 1 through n — 1 of that row,
while the mth element of each column contains the sum of the
values in elements 1 through m — 1 of that column.

To compare two row or column vectors, an equation similar
to (13) is used. For example, to compare the two row vectors
shaded in (14), r; and 7, the necessary formula is in (15). In
(15), ry; is element i in row k, ri, is the sum of all values
in the row vector 7, and c¢,; is the sum of all values in the
column vector ¢;. If 7 = s, then the column vector ¢; would be
the shaded portion of column s in (14).

2
v—1 (’ﬂ _ ’#)
Tkov Tlv
d(rk,rl) = E

-—_— (15)
i—1 Cui

Equation (15) is very similar to (13), and the similarity
is made more obvious with some substitutions. Let z = ry,
y =11, p(xi) = ki /Tkos P(Y:) = 713/710, and n = v — 1, then
apply those substitutions to (15) to result in (16).

n

d(z,y) = Z (P(%)C—P(yi))2

i=1 U

(16)

The difference between the two is the y2-distance uses p(y;)
as the divisor, while the modified version uses c,;.

Within probability distance measures is entropy, which can
be calculated from any numerical random variable. Entropy can
be used as a general summary measure of features, generating
entropy vectors of a dataset for selected features. Entropy of a
random variable is calculated as follows: the probability of a
random variable X holding the value x is P(X = z) or p(x),
and a is the base to use, the entropy of the random variable X,
H(X) is calculated using the formula in (17).

=->

zeX

x) log, p( (17)

Many variations of entropy can be useful in NID. These
variations include standardized entropy, conditional entropy,
and the Jensen Distance. Standardized entropy [14] is a method
which compensates for variations in entropy due to the number
of values of the random variable. Using the definition of entropy
in (17), standardized entropy (Hy) is defined as shown in (18),

where m is the total number of values in X and « is the base in
which the entropy is calculated.
H(X)

H(X) = log, m

(18)

Conditional entropy is a distance measure which allows for
two random variables. Where X and Y are discrete variables,
the formula for conditional entropy is in (19).

> plx,y)log, plxly)

zeX yeY

H(X|Y) = (19)

The Jensen distance [15] uses an entropy-like function H'.
The variables within H’ are two of the summation variables
a, b, and ¢; shown in (20) where ¢,,(x) is the frequency of
occurrence of w in x.

a = Zmln ¢w ¢w( ))
wel
= Z (¢w($) — min (d)w ([L’), (bw (y)))
weL
c=Y (duly) —min(¢u(2),0u(y))  (20)
wel

The summation variables contain the various matches and
mismatches: a the positive matches, b the left mismatches, and
¢ the right mismatches. Equation (21) defines H' in terms of a,
b, and the base for which the calculations are made, o.

H' (¢w(), ¢u(y)) = alog, (21)

a+b

Using H' the Jensen distance is formulated as shown in (22).

djens (l’, y)

=Y H (¢u(@), bu

wel

W) + H ($u(y), du(z)) (22)

Besides entropy, also in the category of probability distance
measures is the popular Kullback-Leibler distance (KLD), or
information gain. The KLD is formulated as shown in (23),
where P; and P» are probability distributions over the domain
X, p1(zx) is the probability of = occurring in Py, pa(z) is the

(1,1) (1,2) (L,s)
(2,1) (2,2) (2,s)
(k1) (k2) (k. s)
B=| z s
(1, 1) (1,2) (I, 5)
(u —.1,1) (u —'1,2) (u —'1,8)
(u, 1) (u,2) (u, s)

(1,¢) (Lv—1) (1,v)
(2,1) (2,v—1) (2,v)
(k) (ko1 (k)
z s s (14
(lvt) (l,’U - 1) (la 1})
(u —.1,t) (u—l;v—l) (u —'1,1))
(u,t) (u,v—1) (u,v)
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probability of x occurring in P, and a is the base in which the
KLD is calculated.

pi(x) 23)

KLD(Py, P») z)log, 2 o)
xr

ZP1

Another probability-related distance is the Hellinger dis-
tance, which is related to the more well-known Hellinger met-
ric. The Hellinger metric is shown in (24), where P; and P
are probability distributions over the domain X, p;(z) is the
probability of  occurring in P, and py(2) is the probability of
x occurring in Ps.

1
) (24)

The Hellinger distance, as defined by Sengar et al. [16], is
different from the Hellinger metric in significant ways. First,
the multiple is changed from 2 to 1/2. Second, the square root
of the entire formula is not calculated. Equation (25) shows the
Hellinger distance.

Hp(Py, Py) = <22(«/p1 e )

reX

H,, (P, P) = (25)

Z (\/p1 \/p2($))2

xGX

Finally, we have the likelihood ratio test. This is a distance
similar to the likelihood ratio in (26) where H hypothesizes
no anomaly, H; hypothesizes the presence of an anomaly, X
is a discrete variable, N is the total number of observations,
p(x|Ho) is the probability of x, given no anomaly, p(xy|H;)
is the probability of x; given the presence of an anomaly, and
L (X) is the likelihood ratio of X.

(26)

The likelihood ratio can be extended to calculate the likeli-
hood ratio of a discrete variable (X), as formulated in (27).

27)

The likelihood ratio can be used on packet-rate and -size
features to detect attacks or normal traffic. In this application,
thresholds are set for upper and lower boundaries, where if
the likelihood ratio exceeds an upper boundary an attack is
detected, and if the likelihood ratio falls lower than a lower
boundary no attack is detected.

3) Correlation Similarities: Correlation similarities and dis-
tances are measures that attempt to characterize the correlation
between two datasets, and treat that as a measure of similarity
or distance, rather than using the probability distributions or
magnitude of vectors.

The Spearman p rank correlation is one such measure of
similarity. Equation (28) gives the Spearman p rank correlation
where X, and Y, contain the rankings of discrete variables
X and Y, x; and y; contain the th rank in X, and Y,

(respectively), X,. and Y, have the same number of elements,
and n is the number of elements in X,..

6 Zn:(fﬂi - yi)z

i=1

p(Xr, Yy) =1 T2 o1)

(28)

The Kendall 7 rank correlation is another similarity measure
of this type. The Kendall 7 rank correlation is defined as in
(29), where the sgn function is used to calculate the number of
discordant pairs of ranks subtracted from the concordant pairs
of ranks.

n—1 n
25, > sgn(w; — ;) -sgn(yi — yj)

i=1 j=i+1
Xra Y,) = 29
(X, Y,) T 9)
The sign, or signum, function is defined in (30).
-1, ifz <0
sgn(z) = { 0, ifxz=0 (30)
1, ife >0

In order to apply the Kendall 7 rank correlation to NID, a
slight modification can be made to the standard formulation
in (29) which allows the capturing of both similarities and
differences. The result is shown in (31) where the eq function
is defined as shown in (32).

R E
(X, Y,) = == n(n—1) -
(3D

— 1’ x = y
eq(z,y) = {0, otherwise 2

A third correlation coefficient method that can be applied to
NID is the Pearson product-moment correlation linear coeffi-
cient, or . The formula for r is given in (33), where X is the
mean of the discrete variable X.

> (x

r(X,Y) = =1

-

An equivalent formulation of the Pearson product-moment
correlation linear coefficient that has been used for NID appli-
cations is defined in (34).

)( Yi — Y)
(33)

>§< 7y

A :nzxzyi - ZLZ%
=1 =1 =1
n n 2
B = nZw? - <Z$Z>
i=1 i=1
n n 2
C=4|n yi — (Z y:)
i=1 =1
A
"X Y) = (34)
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A fourth method in this category is one that is based on
Learning Vector Quantization, and uses the cosine similarity
with an Artificial Neural Network. The definition of cosine
similarity is shown in (35), where ¢ is the angle between vectors
x and y.

(z,y)

In application of the cosine similarity and Learning Vector
Quantization to NID, a similarity is defined to determine which
neuron of an Artificial Neural Network ‘wins’ [17]. The for-
mulation is given in (36), where U is one of the training set of
attack samples, V' a neuron, W,, and W,, are the weight vectors
associated with U and V (respectively), W,, and W,, have the
same number of elements, and 7 is the total number of elements
in W,.

cos ¢ = (35)

ZWuk W

\/ S w2,

The cosine similarity can also be used as a measure of self-
similarity [18]. In this implementation of the cosine similarity,
shown in Q7), G is a system status snapshot during time inter-
val ¢, and 1 is a vector of all ones with the same dimensionality
as Gy.

Sim (U, V) (36)

su@) = = @7
Gy /T

The running mean of .S; is taken over the last k& time periods
(where k is selected using methods described in the paper),
then each S; is compared to the mean to determine whether
it is within limits set by the researchers. If S; is not within
two standard deviations of the running mean, then some authors
assume an attack or security violation has taken place.

4) Other Similarities and Distances: Some similarity mea-
sures that are useful for NID do not fit into the three primary
categories above. For example, one method uses the Dice
similarity [19], defined in (38), where X and Y are strings from
Internet Relay Chat channels, an n-gram is a subsequence of n
items from a given sequence, and the number of n-grams in X
is given by |ngrams(X)|.

2 X y
Dice(X,Y) = |ngrams(X) Nngrams(Y)|

|ngrams(X)| + |ngrams(Y)| o9

A variation of the x? distance known as squared x? (also
known as y-Squared) [20] can also be used to compute dis-
tances with n-grams. The squared x? measure is shown in
(39), where S is the set of all possible n-grams, x and z are
byte sequences taken from the packet payload, ¢s(x) is the
frequency of occurrence of s in z.

2
door(z.2) Zws — 6:(2)]

(39)
seS S + (bs( )

Some of these similarities and distances that do not fit into
the three primary categories are particularly useful in applica-
tion to NID that is not based upon raw network traffic or fea-
tures built from the packets, but on other data characteristics.
One such method is based upon a linear kernel (dj, see (40) [15].

=Y bu(z) - du(y)

wel

di(z,y) (40)

Note that this is effectively the dot product of the probability
distributions of w within z and y.

A variation of the Geodesic distance is another such method
that can be applied to NID. For this kind of application, the
Geodesic distance may be formulated as dgq = arccos(d ),
which is somewhat different than the standard definition of
Geodesic distance.

C. Comparison of Types of Measures

Different types of distance and similarity measures exhibit
different properties that should be taken into account before
applying them to a NID application. These differences make
certain measures more or less useful for certain types of
data, degrees of dimensionality, and other considerations. For
example, while all distance measures presented here satisfy
requirements one (non-negativity) and two (identity of discern-
ables) for distance measures, not all satisfy requirements three
(symmetry) and four (triangle inequality). Here, the types of
distance measures and similarity measures described in Part B
will be compared according to the definitions presented in Part
A, and according to other key differences.

1) Power Distances: All power distances meet all four of
the requirements for distance measures, and qualify as distance
metrics. When applied to NID applications, Euclidean distance
shows clear differences between normal and attack samples,
and provides characterizations of the different types of traffic
records. Euclidean distance can also be applied indirectly,
by first utilizing a distribution measure, such as the Discrete
Fourier Transform, then applying Euclidean or other power
distance measure to the frequency domain. This approach can
potentially solve some of the problems with applying Euclidean
distance directly to the features (or to the traffic itself).

In NID applications, traffic data may often have a large num-
ber of features. In this high-dimensionality case, the fractional
I, method may be more effective than Euclidean in higher
dimensional datasets, and the utility of fractional [,-distance
may increase as dimensionality increases. This may be the case
even though fractional [,,-distance does not result in a familiar
definition of “nearest” in two- and three-dimensional space, as
Fig. 1 demonstrates. Notice how fractional [, values such as
0.75 yield discontinuous regions of nearest spaces in the figure.

2) Distances on Distribution Laws: Only some of the meth-
ods for measuring distances on distribution laws qualify as
distance measures and metrics. These distances are often re-
ferred to as divergences rather than distances in the case that
they fail to satisfy the triangle inequality and symmetry. For
example, the KLD, described in Part B of this Section, is
actually a divergence, not a distance, because of its violation of
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both the triangle inequality and symmetry. The Bhattacharyya
distance violates the triangle inequality, but does exhibit sym-
metry. The Hellinger distance complies with both the triangle
inequality and symmetry. Conditional Entropy also qualifies as
a divergence or similarity measure, due to its violation of both
symmetry and the triangle inequality.

Besides their properties relating to the definition of distances,
other properties of distances on distribution laws can motivate
their use. For example, the Mahalanobis distance is particularly
beneficial because the distance calculated accounts for the
variance within the sample data, therefore allowing outliers to
be more accurately identified. Conditional entropy can be used
in NID for purposes other than distance measures, such as a
measure of an individual flow of traffic.

3) Correlation Similarities: Correlation similarities are dif-
ferent from distances on distribution laws and power laws in
that they are able to operate not only on continuous or discrete
types of data, as distribution law and power law methods do,
but also on rankings, or ordinal types of data. Thus, the four
requirements for distance measures do not necessarily apply to
these methods; they are all considered to be similarity mea-
sures, rather than distance measures. Nevertheless, all of the
correlation similarities presented here do satisfy at least require-
ment two for distance measures (identity of indiscernibles).

Correlation similarities are types of hypothesis tests which
test the hypothesis of correlation between two sets of data. The
Kendall 7 rank correlation is the most general of the methods
addressed in this paper. The Kendall 7 rank correlation is a type
of non-parametric test; it is used to test the degree of statistical
dependence between two variables, without reliance on any
assumptions on the distributions of the two variables.

The Pearson product-moment correlation and the Spearman
p rank correlation are very similar types of measures: both
are used to assess how well a variable can be described by
a third reference function. The difference between these two
measures is that the Pearson product-moment correlation gives
a measure of the linear correlation between two variables,
while the Spearman p rank correlation assesses how well the
relationship between two variables can be described using a
monotonic function.

The cosine similarity is a more simplistic type of correlation
similarity which measures the degree of similarity between two
vectors in terms of orientation, rather than magnitude.

Within NID applications, it is sometimes useful to make
use of multiple correlation coefficients within a single distance
measure, in order to detect similarities a single measure might
not catch.

This section compared the three different types of distance
measures available: power distances, distances on distribution
laws, and correlation similarities. In the next section, we iden-
tify the uses of these distance measures within the NID field of
research.

V. DISTANCE MEASURE USE

Examination of the current state of distance and similarity
measure use requires a review of recent work. The goal is to
examine how research is using measures within the Anomaly

Detection (AD) field. We analyze research published since 2005
to find articles which provided both names and formulas for the
measures used. In addition to the discovery that many authors
do not provide sufficient information about the measures used
to replicate their work, we also discovered that while measures
are used ubiquitously in this field, they are only used in a subset
of the phases outlined in Section III.

This review found measures used within the phases of feature
selection (Section V-A), classification (Section V-B), and clus-
tering (Section V-C). In the explanation of the measures used
the works are separated by the phase of use, and only exemplar
articles providing excellent description and identification of the
measure(s) used are examined. To provide consistency in labels
all measures named within this work are referred to by the
standard names described in, “Encyclopedia of Distances,” by
Deza and Deza [4].

A. Feature Selection

The first AD phase to show explicit use of measures within
the literature is feature selection. The measures used in feature
selection tend to be those related to probability, as the probable
occurrence of a feature is a useful mechanism by which to
reduce dimensionality of large datasets.

Eid et al. [21] develop a feature selection method for Net-
work Intrusion Detection (NID) in which the first layer uses
Kullback-Leibler distance (KLD) to rank the features in the
dataset. KLD, or information gain, is formulated as shown in
(23), where P; and P» are probability distributions over the
domain X, p;(x) is the probability of = occurring in Py, pa(x)
is the probability of « occurring in P, and « is the base in which
the KLD is calculated.

The features are ranked by KLD, then the dataset is classified
using the J48 classifier (an open source variation of the C4.5
decision-tree algorithm). After classification local and global
maxima accuracy are identified, and features are selected for
inclusion when performing the final classification based on
the identified maxima. The resulting reduced set of features
led to an increased classification F-measure of 99.2% using
only 20 features on the NSL-KDD dataset. The contribution
of the paper is not limited to a new framework for feature
selection, but is also the repeatability of the work. Eid et al.
[21] are precise in their definitions of the measures used, and
the methods used to achieve results, such that confirming their
experiments would be relatively simple.

In another notable recent work Hancock and Lamont [12]
perform feature selection in a multi agent network attack classi-
fication system using the Bhattacharyya coefficient (12) to rank
features according to the ability of each feature to distinguish
one class from the others.

The three features with the largest overlap (largest p(Py, Ps)
value) are selected after rejecting any feature which is strongly
correlated to a higher ranked feature to reduce redundancy
among selected features. The feature selection is part of each
agent within their system. The agents are then distributed
throughout the network in an attempt to provide an effective
multi-agent Network Intrusion Detection System (NIDS) using
reputation.
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Other works use distances related to probability in feature
selection problems, and in ways which may not be obviously
distance related. Wang et al. [14] use an entropy feature vector
calculated using standardized entropy as defined in (18). En-
tropy is then used to calculate a value for each feature before
training a particular type of classifier.

In feature selection the use of measures is limited to those
related to probability. However, the way in which the measures
are used within feature selection varies from simple entropy
calculations to rank ordering features based on KLD along
with multiple classification runs. Use of the measures in feature
calculation is limited to calculation using a single feature
(measurement for future comparison), or calculation using two
or more features (direct comparison), but those two can be used
with measures to provide a myriad of different methods for
selecting features.

B. Classification

After feature selection, classification of the dataset using
the selected features is the next step in the process. Some
prior research has very effectively compared classification
performance results when using multiple distance measures.
Chmielewski and Wierzchori [2] examine the use of the [,-
metric ((5), with p = r > 1), fractional /,-distance ((5), with
0 <p=r<1), and cosine similarity (35) to measure the
distance between different samples of high-dimensional data.
Through experimentation using differing values of p on the -
metric, and using the resulting distance in an application of
negative selection to a Network Intrusion (NI) dataset, they
conclude that values of p on the interval [0.5, 1.0] should
provide an improvement in detection rate compared to other
values when applied to high-dimensional datasets.

In another work, Chmielewski and Wierzchon [22] suggest
using both binary and real-valued detectors to detect non-self
samples. They demonstrate that the results are both consistent
with the theory that the utility of fractional [,,-distance increases
as dimensionality increases, and that using two different types
of detectors significantly increases the coverage of the non-
self region by generated detectors. Both works demonstrate
applications of the power (p, r*)-distance in ways that challenge
common intuition about distance.

Tan et al. [23] generate Euclidean Distance Maps for the
features of each sample in the dataset, then convert the distances
in each cell of the map to a color for purposes of rapid
visual comparison. The visualization showed clear differences
between normal and attack samples, and provide novel char-
acterizations of the different types of computer network traffic
records. While Euclidean distance is not used as the singular
difference between two datasets, the generation of a feature
distance matrix is a novel method of classification.

Gu et al. [19] developed a method of detecting Botnets that
uses the Dice similarity (see (38)) where X and Y are strings
from Internet Relay Chat channels, an n-gram is a subsequence
of n items from a given sequence, and the number of n-grams
in X is given by |ngrams(X)]|.

Most of the analysis encountered in this review is based
upon raw network traffic or features generated from the network

packets. The use of data from a higher-level abstraction than
that usually addressed by NID (character streams) gives a
glimpse of an entire area of the field in which little work is
done in comparing the efficacy of different measures.

Zhao et al. [24] use a single distance measure which incor-
porates one of three correlation coefficients to detect stepping-
stone attacks, where one computer is used by the attacker to
reach another. The authors use the alternative to the Kendall
7 rank correlation previously described in (29), (31), (33) and
(34). Each measure is applied to the two traffic streams, and
each result is subtracted from the number one, to calculate
the minimum distance between the two streams (o(X,Y)), as
shown in (41).

J(Xv Y) = min (]- - P(XT, }/;)a

1-7(X,,Y,),1—=r(X,Y)) 41

If 0(X,Y) is less than a given threshold (set by the re-
searcher), then the compared pair is similar enough to be
considered relayed traffic. The use of multiple correlation co-
efficients within a single distance measure is a good example of
using multiple measures to detect similarities a single measure
might not catch.

Classification is useful, but it assumes a priori knowledge of
the classes to which anomalies will belong as well as the unique
characteristics which define that class. Clustering, on the other
hand, can be helpful in determining how many classes there are
and identifying any unique characteristics of a given class when
those two pieces of information are unknown.

C. Clustering

Some published works effectively use more than one family
of distance measures to cluster data. One such work is by
Lakhina ef al. [25] which uses measures from both the power
(p, r)-distance and probability families. The first measure used
is the entropy of the traffic, as shown in (17).

The authors use entropy as a general summary measure
of features, generating entropy vectors of the sample set for
selected features. The second measure used is the squared
Euclidean distance (power (p,r)-distance where p =2 and
r = 1), which the authors use to calculate the magnitude of
the anomalous component of the entropy vector. The authors
demonstrate that entropy is an effective method of detecting un-
usual traffic feature distribution changes caused by anomalies,
and that their multiway subspace method is an effective method
of extracting anomalous traffic changes.

The clear explanation of methodology for both the reason
for the use of multiple measures from different families, and
the qualities needed for the problem being solved, is extremely
helpful in understanding how and why each measure was used.
The authors did not provide a formula for the squared Euclidean
distance, but they did identify it as the /5 norm, and later
as ||x||?, where X is a vector of the anomalous components.
Although the formula is not provided, the level of clarity
was sufficient to allow understanding and repetition of the
experiment.
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Rieck and Laskov [15] utilize a myriad of distance measures
in evaluating the effect of measure choice on anomaly detection
accuracy. The first defined measure is a linear kernel (dy, see
(40) where L is the language corresponding to all the sequences
of length n possible in incoming connection payloads, w repre-
sents a sequence which is part of L, x and y are two incoming
connection payloads, and ¢,,(x) is the frequency of occurrence
of w in x. This is effectively the dot product of the probability
distributions of w within z and y.

The second defined measure is identified by the authors
as Geodesic distance, which the authors formulate as dgq =
arccos(dy). It should be noted this does not correspond to
the standard definition of Geodesic distance. The third defined
measure is Canberra distance (dc,n) as shown in (42).

(42)

The fourth distance measure defined by the authors is Jensen
Distance, another measure not defined in the Encyclopedia
of Distances, which uses an entropy-like function H'. The
variables within H’ are two of the summation variables a, b,
and ¢; shown in (20)—(22).

Of the four measures defined, two of them are not found in
the Encyclopedia of Distances: dgq and djens. In addition to the
distance measures, the authors describe four similarity coef-
ficients also used to compare two input connection payloads,
which use the summation variables defined in (20). The simi-
larity coefficients described are the Jaccard (s;), Czekanowski
(sc), Sokal-Sneath (s;), and Kulszynski (s, ), as shown in (43).

a

Sj:aerJrc
2a
Seg=———
2a +b+ ¢
a
§g=———
a+2(b+c)

1 a a
= — —_— 4
ok 2(a+b+a+c) (43)

Rieck and Laskov [15] also use a simplified version of
Mahalanobis distance developed by Wang and Stolfo [10] for
use in high-throughput environments. The simplified measure,
my,q, is defined in (7).

Two aspects of the authors’ treatment of measures are no-
table. First, the authors purposefully include the distance and
similarity measures in the portion of the experiment to be
changed, examining the effect different measures have on their
results. This is especially notable as only five papers are discov-
ered in this review which focused on the impact of measurement
selection on the results. Second, the simplified Mahalanobis
distance is used as an anomaly detection mechanism by the
authors: it is not included in the list of distance measures.

In this section, we presented exemplary research, show-
ing how the authors effectively identified and presented clear
parameterization of their distance measure choices. We also

TABLE 1
QUANTITY OF EXPLICITLY NAMED DISTANCE OR SIMILARITY
MEASURES WITHIN SAMPLED WORKS

Measure identified Count References
Standard 29 [26]-[54]
Novel 4 [55]-[58]
Not given 67 [59]-[125]

showed how several different techniques are used to compare
system performance when the distance measures or parame-
ters are altered. Finally, it is important to note that several
authors identified novel uses of distance measures with success.
Despite these few good examples of proper treatment of dis-
tance measures we are able to find, it is unfortunate to note, as
will be described in the next section, that the large majority of
research in this field does not share a similar rigorous approach
to identifying and explaining their use of distance measures
in NID.

VI. AN ANALYSIS OF THE USE OF DISTANCE
MEASURES IN THE FIELD

To provide an objective view of the state of distance measure
identification and explanation in the literature, we randomly
sampled a cross-section of the publications in Network Intru-
sion Detection (NID) research. First, we identified 556 papers
published between 2008 and 2012 (inclusive) containing the
terms “network intrusion” in the title, abstract, or keywords
using Google Scholar’s reverse citation lookup function to a
depth of three. Of these papers, we randomly selected a sample
of 100 papers to manually review.

Our survey uses the, “Encyclopedia of Distances,” [4] as
the standard listing of measure definitions. Any names and
formulas found in the sample are translated to match those
within the Encyclopedia. To quantify how well the name and
formulation of each distance measure matched the standard, we
categorized papers into three groups:

* Standard: The measure name or formula is explicit in the
paper, and identifiable in the Encyclopedia of Distances.

* Novel: The measure name or formula is explicit in the
paper, and is not identifiable in the Encyclopedia of
Distances.

e Not Provided: The measure name or formula is not ex-
plicit in the paper.

The categorical information from the 100 papers in this
sample is depicted in two tables: Table I shows the quantity of
papers which explicitly named the distance measures used, and
Table II categorizes papers based on whether specific distance
or similarity measure formulas are provided.

Among the work sampled for this review, 65 of the papers
did not provide a measure name, and 74 of the papers did not
provide an explicit formulation.

It is useful to understand which types of measures are being
used in the field of NID, and which are not. Focusing on only
the work with specified distance measures, there are 33 articles
with distance measures that are named, some with more than
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TABLE 1II
QUANTITY OF DISTANCE OR SIMILARITY MEASURES WITH
EXPLICIT FORMULATIONS WITHIN SAMPLED WORKS

Formula provided Count References
(28]-31], [33]-[36], [38],

Standard 21 [39], [41], [43]-[47],
[49]-[51], [53], [54]

Novel 4 (55]-[58]
[26], [27], [32], [37],
Not provided 75 [40], [42], [48], [52],

[59]-[125]

TABLE III

FREQUENCY OF DISTANCE OR SIMILARITY MEASURES TYPES
USED WITHIN SAMPLED WORK

Measure type Count
Power (p, r)-distance 20
Distances on distribution laws 11
Distances on strings and permutations 4

TABLE 1V
FREQUENCY OF DISTANCE MEASURE COMPARISON

Measures compared Count References
! 98 [38]-[125]
2 1 37]
3 1 (35]

one measure, and three types of distances identified within the
sampled work. The three different types of measures observed
are all defined in the Encyclopedia of Distances: power (p,r)-
distance, distances on distribution laws, and distances on strings
and permutations. The distribution of distance measures within
the 33 papers is listed in Table III.

The majority (57% of works with measure specified) of the
distance measures used within the sample are based on the
power (p,r)-distance and distances on distribution laws. The
sample shows that there is little exploration of the possible use
of other measures within the field, as most of the measures are
based upon the power (p, r)-distance or distances on distribu-
tion laws.

This survey of 100 papers in the field also revealed that the
vast majority (98%) of papers do not examine more than one
distance measure during any single phase of NID. Table IV
shows that only two papers compared more than one distance
measure during a phase of research. This striking finding re-
veals that there is more to explore in the trade space of distance
measure choice in research.

Given these findings, we can see clearly that there is work
to be done regarding identification, specification, providing
rationale, and comparing the use of distance measures. The
contents of the 100-paper sample categorized in Table IV are
summarized in the following entries. These entries are orga-
nized primarily by whether the measure(s) used are defined in

TABLE V
MEASURES USED IN SELECTION

Type Measure Count  References
Power (p,r) Euclidean 2 [27], [43]
Mahalanobis 1 [46]

. Kullback-Leibler [28], [35]
Distances on . 4 ’ ’
distribution distance (KLD) [50], [51]
laws Entropy 2 [33], [48]

the work, and then subcategorized by the phase of NID in which
the measure is used.

A. Measure Defined

In an Intrusion Detection System (IDS) there are three phases
where distance or similarity measures are observed within the
sample: selection, clustering (unsupervised classification), and
supervised classification. One of the first possible uses of a
distance or similarity measure in an IDS is the selection phase.
A breakdown of the different measures identified in the sample
is provided in Table V. The two categories of measure stand out
in their use in selection: power (p, r) distance and distances on
distribution laws.

1) Selection: There are three examples that use power (p, 1)
distance as the basis for feature selection. Li er al. [27] pro-
pose the use of k-means clustering to reduce the number
of observations evaluated, and the authors discuss using the
distance between data and clusters. Although the authors never
define distance precisely, the use of k-means clustering sug-
gests Euclidean Distance is a reasonable assumption. Tan et al.
[46] generate Mahalanobis Distance Maps to perform feature
selection, then analyze the results of the comparisons between
normal and attack packet feature maps. The map analysis is
then used to select the features for classification. Lu et al. [43]
select features based on the Isomap algorithm, which is used
for dimensionality reduction while maintaining the nearness of
data points doesn’t change while dimensionality is reduced.

Power-(p, ) distances are very useful tools, and are used
often in almost all works, but there are difficulties to be con-
sidered if using power (p,r) distance. For example, setting
p = r = 2 results in Euclidean distance, which, when used on
high-dimensional data can have counter-intuitive results.

There are six examples of the use of distances on distribution
laws during the feature selection phase. The first four make use
of KLD. Sindhu er al. [28] use KLD to calculate the gain ratio
of each attribute during the feature selection process. The gain
ratio is then used in calculating the attribute farthest from a gain
ratio of zero (and thus most useful for classification), and is
implicitly used as a similarity measure. Wang et al. [51] and
Singh and Silakari [50] use raw KLD to determine the features
selected: features with high values of KLD are retained. In all
three examples KLD is used as a basic measure of similarity
with a threshold set by the research used to determine the
gain. Lima et al. [35] present a comparison of different entropy
measures (Renyi, Tsallis, and Shannon) for feature selection.
The three definitions of entropy are each used for feature
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TABLE VI
MEASURES USED IN CLUSTERING

Type Measure Count References
32], (33], [37],

Euclidean 10 [39], [40], [42],

Fower (,7) 145), [47), [50), [53]
Euclidean® 2 [41], [44]

Distances on .

strings and Iiepgl(;al [36]

permutations attributes

Unknown dij 1 [52]

reduction based upon the gain ratio, then the 10 attributes with
the highest gain ratios are selected.

Rather than KLD, the last two papers makes use of entropy
in the selection phase. Devarakonda et al. [33] use entropy as
a method of feature selection. The features are ranked in de-
scending order by entropy, then the top 15 features are selected
for use in classification. Chen et al. [48] use the entropy of
network traffic flows to train a Support Vector Machine (SVM).
They compared the attack detection rate and accuracy of SVM
classifiers trained on the full feature-set of the Knowledge
Discovery and Data Mining Cup 1999 (KDD99) dataset, the
features selected by rough set theory, and entropy. Entropy is
used as a measure of each flow, but is not used as a distance
between flows, and is a good example of the distances on
distribution laws category.

In the entire sample only one paper examined the effect
different measures had on the experiment when applied to
selection, and most just used information gain. The measures
used within the sample clearly indicate a lack of published
exploration in this area as well as an implied suitability of KLD
as a feature selection measure.

2) Clustering: Unsupervised classification, or clustering,
provides a method of discovery for groups that are unknown
to the user. Those groupings depend in part on the method
of clustering, and the measure used to determine distance
between the instances. In particular, the type of measure is
critical in determining the efficacy of clustering. A breakdown
of the different measures identified in the sample is provided
in Table VI. Three different measure types are used in the
clustering phase among the papers in the sample: power (p, )
distance, distances on strings and permutations, and a distance
variable.

Among those clustering methods which use power (p,r)
distance the most common clustering method is the k-means
and its derivatives. There are a wide variety of implementations
among the literature when examining the use of k-means clus-
tering: Brahmi et al. [40] use the standard k-means method-
ology, Borah et al. [32] hash the inputs before clustering,
Yang and Mi [47] use a fitness function to maximize the
inter-cluster distance and minimize the intra-cluster distance,
and Bharti er al. [45] propose a modification to the k-means
algorithm to solve the no class and class dominance problems.

Aside from k-means clustering, some other unsupervised
classification methods are implemented using power (p, r) dis-
tance as the measure of choice. Devarakonda et al. [33] use

the k-nearest neighbor method of clustering as one of many
in a voting ensemble. Singh and Silakari [50] also make use
of k-nearest neighbor as the classification method. The use of
distance is in the context of the k-nearest neighbor classifier,
and authors specify the use of Euclidean distance, but note
that other distances (such as the Manhattan distance) could be
used instead. Chou et al. [53] classify with a fuzzy c-means
clustering technique. This method makes use of an optimization
function that is specified as based upon the [5-norm (Euclidean
distance). Hayat and Hashemi [42] demonstrate clustering with
the constraint of limited memory, and introduce a clustering
method based on Discrete Cosine Transform. Cheng and Wen
[41] utilize a Self-Organizing Map for classification. Palmieri
and Fiore [44] view traffic flows as a dynamic system, and
therefore use recurrence quantification analysis as an unsu-
pervised classification method. However, the authors recog-
nize that transformation between dimensionalities can cause
the distances between points to become distorted, and at-
tempt to compensate by identifying, “false nearest neighbors,”
and use the squared Euclidean distance as a metric. Finally,
Obimbo et al. [37] investigate vote-based use of self-organized
feature maps. Several self-organized feature maps are trained,
and each votes on the resulting data shape. In experimentation,
the authors compare use of Euclidean distance to use of a
customized distance measurement. Zheng and Wang [39] in-
vestigate a clustering approach which consists of two phases:
clustering phase which is specified as using Euclidean distance,
and Particle Swarm Optimization phase which uses the clusters
from the clustering phase as the initial particles. The Euclidean
distance of a point from a cluster center is utilized in the Particle
Swarm Optimization fitness function.

The distance or similarity measures used are not always
based on physical distance. Gogoi et al. [36] demonstrate a
clustering approach to anomaly detection in which the similar-
ity between two objects is defined as the number of attributes
which have identical values between the two objects. In another
work, Zhuang et al. [52] introduce a proximity-assisted IDS
approach to identify worms. A clustering approach is used
based on, “proximity”. The algorithm presented makes exten-
sive use of a variable representing distance, but this variable is
not defined.

3) Supervised Classification: Supervised classification is a
broad field with many possible algorithms and measure to be
used. A breakdown of the different measures identified in the
sample is provided in Table VII. The following works focus on
possible improvements to classification using supervised meth-
ods, and use variations on the following measure categories:
power (p, ) distance, distances on distribution laws, distances
on strings and permutations, and novel measures not previously
defined.

Among the supervised classification methods using power
(p,r) distance, there is a wider variety of classification types
used. Gong, et al. [26] study a modification of the Negative
Selection Algorithm using an additional training phase to min-
imize the number of self-samples required to cover the self-
region, and reduce the false alarm rate greatly and the detection
rate slightly. Ferreira er al. [34] investigate the use of wavelet
analysis and Artificial Neural Network (ANN) for an IDS.
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TABLE VII
MEASURES USED IN SUPERVISED CLASSIFICATION

Type Measure Count References
Power (p,r) Euclidean 3 gg} E;g}
Distances on Probability 1 [29]
distribution laws T
Entropy 1 [31]
. Affinity ;
Distances on 1 (30]
strings and (LCS(z,y))
permutations Swap 1 [54]
metric
Anomaly
Metric Sg [58]
Novel Matching 1 [55]
Degree
¢ 1 [56]
sim(Sy, S2) 1 [57]

Yi et al. [38] introduce an improved incremental Support
Vector Machine algorithm with a modified kernel function that
weights data points according to their distance to the hyper-
plane, to indicate the likelihood that the point will be a support
vector.

However, not all uses of power (p,r) distance are strictly
Euclidean distance. Kou et al. [49] address the case of classify-
ing multiple classes (more than two). A kernel method called
multi-criteria mathematical programming is used to classify
data with nonlinearities. The concept of distance to the hyper-
plane is required for the kernel method, and is specified as a
formula that contains the [5-norm.

There are two examples of distances on distribution
laws among supervised classification methods. Altwaijry and
Algarny [29] consider a Naive Bayes classifier in which training
data is processed to find the probability of each feature value
occurring in the normal data. The calculated probability is then
used as a threshold to determine whether new data is an attack
or normal. In this case, probability calculations are utilized as
the “distance measure” even though distance is not explicitly
discussed. Arshadi and Jahangir [31] propose using the entropy
of packet inter-arrival times within a sliding window to detect
SYN flooding attacks, based on the concept that attack packets
have lower entropy than normal packets. If the entropy in the
current window is less than the mean entropy minus three
standard deviations, then an attack is identified. Again, entropy
is defined and used as a distance measure, but distance is not
explicitly discussed.

Among distances on strings and permutations, there are a
variety of uses. Most identified by this sample to fall into
those techniques loosely labeled as artificial immune system.
Antunes and Correia [30] investigate the immunological con-
cept of Tunable Activation Thresholds. This is as opposed
to the commonly-studied immunological concepts of negative
selection and danger theory. In the study of Artificial Immune
Systems, the distance concept is known as affinity. In this
study, affinity is defined as the maximal length of the sub-
string in common between the T-cell receptor (the detector

element) and the peptide (the element of the data to be clas-
sified), or the similarity longest common substring between x
and y (LCS(x,y)) where x and y are strings. Zhang et al.
[54] study artificial immune systems and specify affinity as
allowing for “any kind of Hamming, r-continuous matching,
etc.”. This study uses the Hamming matching algorithm to
determine affinity. He and Parameswaran [58] work from the
premise that anomalous connections from a single attacker are
similar to each other. They develop a system that tests multiple
connections for similarity within clustered groups, compare it
to a set threshold, and mark everything above the threshold
as anomalous. The devised novel similarity measure is called
the Anomaly Metric S¢, and is related to distance measures on
permutations or strings.

Some of the supervised classification examples are not able
to use previously defined measures of distance and similarity,
and devise new methods of measurements specific to the topic
of the study. Mabu et al. [55] propose an IDS framework
of generating class-association rules using fuzzy set theory
combined with genetic network programming. In either misuse
or anomaly detection two pools are generated to hold the as-
sociation rules for normal and intrusion connections, and those
rules are then applied to the classification of the dataset. A novel
similarity measure is defined by the author called Matching De-
gree, which is used to determine whether a newly generated rule
matches the rules known to be effective. Shyu and Sainani [56]
propose a framework to be used in the development of IDSs
using multiple classification techniques and multiple agents.
The intent is to reduce the complexity involved in building
IDSs and distribute the load throughout the network, rather
than having all load at a single point. The distance measure is
defined but only referenced as a “distance measure,” and uses
the eigenvectors and eigenvalues to generate a measure value,
which is then compared to a threshold to determine abnormality
or normality. Su et al. [57] propose a method of comparing
fuzzy association rule sets generated using incremental data
mining. A rule set is generated from incoming traffic, and
another from attack-free training traffic. The similarity between
the rule sets is used to determine the abnormality of traffic from
which the rule sets are generated, with a decision made every
two seconds. The similarity measure is a novel formulation
defined for the purpose of evaluating the rules in this study.

B. Measure Undefined

Those works that did not provide specific identification or
formulation of the measure used are covered below. The papers
will be grouped as in Section VI-A, with the addition of
one further category: works that focus on the entire system,
presenting a new structure or framework instead of focusing
on one phase.

1) System Focused: Roughly speaking, the works that fo-
cus on the entire system rather than one phase of the sys-
tem can be grouped as follows: ensemble, multi-agent, and
comparison of existing systems using some novel method to
compare. A number of works focus on ensemble techniques
in which the strengths of multiple methods of classification,
whether unsupervised or supervised, are combined to produce
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a (hopefully) more effective method of intrusion detection. At
times the effectiveness is measured by detection rate, false
positive rate, or in other ways. The main focus, regardless of
how the improvement is measured, is to improve the results
of classification, and reduce the number of falsely classified
instances. The ensemble methodologies can be categorized into
two general types: layered and voting.

Among the layered methods, there are a number that use
two or more classification methods to improve results. Ali and
Jantan [63] uses two layers to detect attacks: the first recognizes
undesirable characteristics, then feeds any non-attacks to the
second layer that recognizes desirable characteristics. After the
number of detections made by the second layer pass a threshold
they are clustered using k-means and the first layer is trained
on the results. Xu et al. [116] make use of a “perceptron tree”,
which is a decision tree in which each node is a neural network.
It is proposed in this study that this kind of combination might
display the advantages of both symbolic and non-symbolic
models. Mohammed and Awadelkarim [71] propose a NID
framework using a decision tree to detect known attacks and
two-step clustering to detect new attacks. Both KDD99 and real
network data are used in the evaluation, and the framework is
compared to the Minnesota Intrusion Detection System which
uses Snort and local outlier factor clustering. Salama et al. [75]
implement a method of intrusion detection using a Deep Belief
Network (DBN) to perform feature reduction, then classifying
the remaining features with a SVM. The authors also compare
the DBN-SVM method with each as a standalone classifier, and
compare DBN with other common feature reduction methods.
The results are than DBN-SVM is more accurate than either
alone, and DBN is more effective than Principal Component
Analysis (PCA), Gain-Ratio, and Chi-Square as a feature re-
duction method. Zhang [84] proposes a neural network in which
feature selection, network structure, and weight adaptation are
all evolved in conjunction using a genetic algorithm as part of
an improved evolutionary neural network. A heuristic mutation
operator is used to prevent the search from ending in local
optima, and allow full coverage of the search space. Sarvari
and Keikha [92] propose the use of multiple machine learning
methods to detect attacks in the Intrusion Detection System
combinatory of Machine Learning Methods (IDSCML). The
proposed method uses k-nearest neighbor, decision trees, neu-
ral networks and SVMs to take advantage of the benefits of
both anomaly and misuse detection methods. The most useful
method is the combination of decision tree, 1 nearest neighbor,
2 nearest neighbor, 3 nearest neighbor, and SVM run in parallel
on the data, then combined using a neural network. Wang et al.
[97] present a use of the Artificial Bee Colony algorithm to
select both the free parameters of a SVM classifier and the
features to use in classifying the KDD99 dataset. In every
category of attack used in the experiments, the artificial bee
colony method of free parameter and feature selection resulted
in greater accuracy than either particle swarm optimization or
genetic algorithm. Folino et al. [90] take an ensemble approach
based on genetic programming. The approach is applied in a
distributed manner in order to build a network profile. The ap-
proach is tested on the KDD99 dataset, and shows performance
similar to the winning entry in the KDD99 competition.

Despite the prevalence of layered systems, there are a few
voting systems which focused on the entire system rather than
one phase. Panda and Patra [111] assemble the classifiers
AdaBoost, MultiBoosting, and Bagging each combined with
a decision tree pruned using reduced-error-pruning, and the
results are then compared to other classifiers used within recent
research. Zainal et al. [117] combine individual classifiers de-
signed for detecting a single class, and each utilizing a different
learning method. The classifiers then vote to determine the
final classification. Feature selection is done using Rough Set
Technique and Binary Particle Swarm in a 2-tier process. It is
shown that the system performs better than the best-performing
classifier alone. Farid et al. [67] merges Boosting (AdaBoost)
with a Naive Bayesian classifier. One classifier is created for
each feature in the data, then all of the classifiers are used to
calculate the probability of occurrence of an unseen data point
and the classifiers vote to determine if the point is normal or
anomalous.

Although layering may be a common solution to combining
multiple Network Intrusion Anomaly Detection (NIAD) meth-
ods, some have tried multiple agents. Joldos and Muntean [69]
introduce the idea of comparing the distances between feature
vectors of datasets formed from subsets of large standard
datasets: this study focuses on an investigation of the benefits
of performing feature reduction and classification tasks for
intrusion detection using grid computing. Zeng et al. [101] in-
corporates three primary components: intrusion detection node,
intrusion detection coordinator, and snooper agent. The coordi-
nator and agent are generally located on the same host, while
there is at least one node on each Local Area Network (LAN)
segment. The node captures and parses traffic, and passes new
information back to the coordinator. The coordinator manages
the information and signature databases, and the alert function.
The agent is launched when new information is received from
the node by the coordinator, and gathers information which may
be needed about new attacks. Barika er al. [105] and [106]
propose an architecture for an IDS using distributed mobile
agents throughout the network with four types of agents: sniffer,
filter, analyzer, and decision. The performance of the MA_IDS
is tested using both port scan and SYN flood attacks, and
by passing messages through all the agents. MA_IDS is also
compared to the centralized detection system, and the agent
detection system had less packet loss and shorter detection
delays as the number of packets per second and overall packets
increased. Rehak er al. [124] uses a multi-agent approach to
detect anomalies and build a trust model. Each detection agent
utilizes a single anomaly detection method and contributes to
a trust model built collectively by the multiple agents. Attacks
are determined by thresholding a “trust score”, which in this
context can be considered the distance measure. Yu et al
[83] present an intrusion detection model based on modular
mobile agents. They use the Aglets environment to construct
a mobile agent simulated environment, and use a Markov
chain model as the intrusion classifier. A positive correlation
is found between both the number of detectors and the length
of data, and the True Positive Rate (TPR): increases in either
the number of detectors or length of data resulted in an increase
in TPR. Gao et al. [109] propose a distributed IDS framework
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using both local and global detectors. The local detector is
the Multiple Adaboost algorithm, in which the expectation
maximization method is used to update the parameters of
the detector. The global detector is a combination of particle
swarm optimization and SVM. The results indicate parameter
selection for the local detector is important in minimizing
False Positive Rate (FPR), and show the global detector re-
sults in a detection rate of 99.99% and false positive rate
of 0.3713%.

There are also works that focus on the comparison be-
tween different IDSs, or different studies of particular datasets.
Engen et al. [66] compare the results of research into intrusion
detection using decision trees and Naive Bayes methods to clas-
sify the KDD99 dataset. The comparison is used to investigate
discrepancies in the subsets of KDD99 used in research, and
determine whether KDD99 is useful for further research or too
flawed to be of use. Eljadi and Othman [65] demonstrate the use
of three separate data mining techniques to detect anomalous
traffic in a real world network traffic dataset. The results use a
threshold value to determine whether segments of the examined
dataset contain intrusion attempts. Each method is evaluated for
suitability in intrusion detection by evaluating the time required
to evaluate the dataset segment, and the ability to generate rules
with which to update the Network Intrusion Detection System
(NIDS) in use. Pastrana et al. [74] propose a framework to use
in modeling existing NIDS. Genetic Programming is used to
generate an instance that behaves like the modeled NIDS, but
is much simpler, for the purpose of determining weak points.
The created model allows researchers to discover new evasion
methods, and provides a new method with which to audit the
performance of commercial NIDS. Gogoi et al. [91] present a
limited review of anomaly based NIDS, a few numeric and cat-
egorical proximity measures, and performance comparison of
some supervised and unsupervised NIDS. This work discusses
different proximity measures and their formulations, but does
not mention the measure description or definition. Shafi and
Abbass [77] propose a method of generating NIDS datasets
with real background traffic and simulated attacks. They then
compare a number of different intrusion detection algorithms
with a dataset built by the authors according to the proposed
method. Day and Burns [64] compare the performance of Snort
and Suricata NIDS on multi-core computer systems. The per-
formance of each is evaluated based on accuracy, false positives
and negatives, system utilization, and dropped traffic. The con-
clusion is that while Suricata performs marginally better than
Snort, the increased resources required by Suricata make Snort
the better choice for an open source NIDS. Zhengbing et al.
[125] propose an algorithm to find new attack signatures based
on known attack signatures, using a variation of the Apriori
algorithm (Signature Apriori) to find frequently-occurring flow
patterns. The proposed algorithm is tested against Signature
Apriori using SNORT. It is found that the proposed algorithm
is more efficient than Signature Apriori with equal detection
rates, in the case that the new attack is derived from an earlier
attack. Fanelli [88] experiments on an immune system inspired
IDS by comparing the detection results of Snort and Network
Threat Recognition with Immune Inspired Anomaly Detection
(NetTRIIAD). The two NIDS are compared using the KDD99

dataset in the categories of known attacks, unknown attacks,
and ablation tests.

2) Selection: Many researchers focus on the selection phase
as the primary method of reducing complexity in the field
of NIAD: If the clustering or classification method has fewer
features or observations to process, then the overall result is
reached faster. Khor et al. [59] propose a method of splitting
NID datasets based on the frequency of attack. Normal records
are included in both, but one only includes rare attacks, while
the other includes only non-rare attacks. In both datasets the
authors reduced the number of records included to prevent a
particular class from overwhelming the other purely by virtue
of the number of records included. The experimental results
suggest that splitting the datasets can improve the classification
accuracy of some classes, but not all. Farid et al. [108] inves-
tigate a Naive Bayesian classifier and Iterative Dichotomiser 3
algorithm for feature reduction, where KLD is used to select
the best attributes. Ahmad et al. [61] and [62] propose two
feature selection methods that apply genetic algorithms to
the result of PCA. The fitness function used for the genetic
algorithm uses multilayer perceptron accuracy in one paper,
SVM accuracy in the other, and the number of features not
selected for the particular subset of features in both papers. An
accuracy of 0.99 is achieved with 12 of the 38 KDD99 features
selected using multilayer perceptron, and 99.6% accuracy is
achieved with SVM. Sen and Clark [76] examine the use of
evolutionary computation to develop intrusion detection pro-
grams for mobile ad hoc networks. Genetic programming and
grammatical evolution are used to evolve intrusion detection
programs with the programs doing their own feature selection
(all features are provided) for individual attacks, multiple at-
tack, and finally cooperative attack detection. The fitness of
any given solution is defined detection rate—false positive rate,
and security versus power-used trade-offs are considered in
the experiments because of the inherent limitations of mobile
devices. Das er al. [86] propose the use of multiple machine
learning methods to classify intrusion attempts on a network.
The preprocessor extracts 14 features from network traffic
every 4 seconds. The features extracted are then examined
for use in classification by two methods: PCA and rough set
theory. Based on a comparative study within the work, rough
set theory is chosen as the more effective method of feature
selection. The selected features are sent to the SVM to learn and
classify. Al-Sharafat and Naoum [104] examine the importance
of feature selection in detecting network attacks, and perform
experiments to determine the most effective combination of
features used in research. The set of features selected in
four different works are used to classify network attacks. The
classifiers used are generated by a steady state genetic based
machine learning algorithm. Out of the four classes of features,
one resulted in a detection rate higher than the other three:
97.5%. Shanmugam and Idris [112] introduce a variation of
the data mining algorithm by Kuok and Apriori using fuzzy
logic to create rules expressed as logic implications. This
approach is used for feature reduction to determine the features
which provide maximum KLD for classification of attacks.
Singh and Silakari [114] introduce a Generalized Discriminant
Analysis approach to feature reduction, then use an ANN for
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classification. Generalized Discriminant Analysis (GDA) is a
form of Linear Discriminant Analysis (LDA) in which the
dataset is first transformed into a higher-dimensional space
prior to the feature reduction, in order to more successfully
process nonlinear datasets. The ANN approach is compared
to a C4.5 decision-tree classification approach, and both are
considered using both LDA and GDA for feature reduction.
The GDA feature-reducer performs slightly better than the LDA
with both the C4.5 and the ANN classifiers. Zaman and Karray
[118] present a feature reduction study, in which attempt is
made to improve the Enhancing Support Vector Decision Func-
tion (ESVDF) method by integrating it with a fuzzy inferencing
model. This approach simplifies design complexity and reduces
execution time. The approach is tested on KDD99, comparing
fuzzy ESVDF to other types of ESVDF as feature selectors.
Neural Network and Support Vector Machine classifiers are
used to classify the data post-feature reduction. Accuracy is
found to be best with the proposed method, with decreased
training times. Zargar and Kabiri [120] apply Principal Compo-
nent Analysis to reduce features in the KDD99 dataset in order
to detect smurf-type attacks. The k-nearest neighbor method is
used as the classifier for feature-reduced data. Abdulla et al.
[85] suggest a set of features to use when applying artificial
neural networks to the problem of intrusion detection. The
affect caused by using different types and numbers of vectors
as input to the neural network is explored, as is the effect
of changing the number of epochs for the run. The authors
demonstrate that the detection rate increases as the number of
epochs or vectors increase.

3) Clustering: Clustering is usually an efficient method of
discovering groups among data that the researcher may not
know about, and it lends itself to the use of explicit measures
of distance and similarity. That may be the reason so few
(relatively) of the sampled works focus on clustering but do
not specify a distance measure. Niemald [72] classifies using
a k-means clustering approach. Song et al. [78] present a
clustering method followed by use of a support vector machine.
In this study, a previously-unseen data point is determined to
be anomalous if it is “inside the hypersphere”. Zhenying [121]
compares a single-layer to a multiple layer self-organizing map,
and shows that the multiple layer map is unable to improve
performance. It is proposed that the reason for the lack of
improvement is due to the overlap between different classes of
data. Tarannum and Lamble [79] simulate a hybrid IDS running
on mobile devices. A combination of on demand clustering
(using the Ad Hock On Demand Vector routing protocol)
and neighbor information collection (using the Destination
Sequenced Distance Vector routing protocol) are used in
addition to host-based NIDS to detect intrusions. The Mobile
Ad Hoc Networks (MANET) is clustered with each cluster
having a head that is responsible for the intrusion detection for
that cluster. In the case where the head suspects an intrusion,
but needs more evidence, it engages the nodes in the cluster
to perform cooperative intrusion detection. The feasibility
of a hybrid cooperative approach was demonstrated by the
simulation.

4) Supervised Classification: Supervised classification is
the most reliable method of classification, as it allows the re-

searcher or operator to determine what is normal or anomalous,
and train the classifier on the results of those decisions. One
type of method used by researchers is the tree. Farid et al. [89]
attempt to reduce the rate of false positives by using a decision
tree-based attribute weighting for feature selection and an adap-
tive Naive Bayesian tree for classification. Srinivasulu ez al.
[95] utilize a frequent pattern tree rule-learning algorithm to
learn normal customer behavior in a transaction database. The
study defines two measures for association rules: support and
confidence, which serve the purpose of distance measures.
Support is the ratio of transactions containing all specified
feature values to the total number of transactions analyzed, and
Confidence is the ratio of transactions containing one specified
feature value to the total number of transactions analyzed.
Hu e al. [123] apply Adaboost, a learning algorithm that
combines weak classifiers, to intrusion detection. They use
“decision stumps”, decision trees with one root and two leaf
nodes, as the weak classifiers. This approach is shown to be
less computationally complex compared to ANN and SVM
classifiers, while the detection rate and false-alarm rate is
comparable. Visumathi and Shunmuganathan [82] propose a
new architecture for IDS which uses misuse detection (effec-
tively signature detection) to identify attacks, uses the Apriori
algorithm on the known attack signatures to generate a set of
patterns, compares the known attack patterns to the probable
attack patterns, then adds the attack signature for any probable
attack pattern that has a similarity of greater than 0.9 to any
known attack pattern. The authors obtained a set of results
using a myriad of machine learning methods including SVM,
and found that the random forest algorithm gave the highest
accuracy with 99.97, but do not provide any information about
the false alarm rate.

Another method is modeled after the immune system, some-
times labeled as an artificial immune system. Fanelli [122]
presents a hybrid immune inspired IDS: NetTRIIAD. The sys-
tem uses two layers to allow for misuse and anomaly based de-
tection. The innate layer performs misuse detection for existing
threats, ensuring that known attacks will be caught. The adap-
tive layer performs self-nonself discrimination by imitating the
body’s response to intruders using 7' cells. When compared
with Snort, the NetTRIIAD system has equivalent TPR, and
a significantly lower FPR, thus its positive predictive value
(0.65) is almost double Snort’s (0.38). Xiao-Pei and Hou-Xiang
[99] propose and demonstrate an experimental IDS that uses
an immune system inspired detection model, with detectors
generated by both randomly and using a genetic algorithm to
produce immature detectors. When attacks are detected features
are extracted and codified for use within a vaccine detector. A
fitness function using the TPR and FPR is used to determine
the probability of a particular detector becoming a parent. The
proposed method is shown to be more effective in both TPR
and FPR at detection of all types of attacks in the KDD99
dataset when compared to a classic immunity detection model.
Zamani et al. [119] use the concept of “danger theory” from
biological immunology in which cells identify foreign cells
which need to be attacked based upon signals sent out by
dying self-cells. They define a “costimulation concentration
level” as a weighted sum of “sends” and “receives” from other
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network nodes. This approach is used to detect Distributed
Denial of Service (DDoS) attacks and is tested on a simulated
network.

The imitation of human systems to detect attacks is not
new, as neural networks have been simulated for many years.
The use of ANN has resulted in advances in the intrusion
detection field and many others. Seliya and Khoshgoftaar [93]
present an active learning procedure using neural networks. The
performance of the new procedure is then compared with the
results of applying C4.5 decision tree to the same dataset
(KDD99). The overall results indicate that the active learning
method is better able to generalize when detecting intrusions
than the C4.5 method. Norouzian and Merati [73] use a two
layer neural network to classify attacks as separate types based
on network traffic. Many works treat classification as a two-
class problem where a record is either an attack, or normal.
Instead the attack classes are used as recorded by the creators of
the KDD99 dataset. Sheikhan et al. [94] experiment with both
multi-layer perceptrons and Elman neural networks to classify
a portion of the KDD99 dataset. The classifiers are evaluated
according to detection rate and false alarm rate, and the authors
also propose a Cost Per Example formula to use in evaluating
classifiers. It is shown that a multi-layer perceptron with 15
inputs performs better than an equivalent ElIman neural network
and the top two performers in the 2000 KDD competition.
Wang et al. [98] experiment with the use of a fuzzy based
feed forward neural network for Denial of Service (DoS) attack
detection. Fuzzy sets are used to define the eight features to be
used in detecting DoS attacks, then to convert a portion of the
KDD99 dataset to the form of the new fuzzy features. A portion
of the converted features is used to train a two-layer neural
network over 276 epochs. Ahmad er al. [103] demonstrate
the use of a back propagation neural network as an IDS for
DoS attacks. Root mean-squared-error is used to evaluate the
performance of a variety of hidden layer configurations, with
the lowest value chosen as the configuration for the experiment.
Sheikhan and Sha’bani [113] utilize a neural-network (multi-
layer perceptron) approach, in which they attempt to improve
the speed of training by using an “output weight optimization-
hidden weight optimization” training algorithm. The results
show an increase in training speed without loss of classifica-
tion accuracy relative to the year 2000 winner of the KDD99
competition. Tian and Gao [115] apply a Genetic Algorithm
to the back propagation process in a multilayer perceptron
to improve the speed of convergence of the network. The
approach is applied to a dataset based on the MIT Lincoln Lab-
oratory dataset. The back propagation with genetic algorithm
approach results in a reduced mean squared error of anomaly
detection compared to a standard back propagation algorithm.
Orfila et al. [110] explore the application of genetic program-
ming to the problem of NID, in particular to the automatic
creation of rules and patterns to use in the detection of at-
tacks. The genetic programming approach to rule building is
compared to the use of C4.5, and found to be both simpler and
to require fewer operations per Transmission Control Protocol
(TCP) packet.

SVMs are another useful tool in the supervised classification
toolbox. SVM allows low dimensional data to be extrapolated

into higher dimensions for the purpose of classifying each
observation, by using a hyperplane as the separator for the
groups of data. Abdulla et al. [60] propose the use of SVM
to classify NetFlow Data and provide warning of worm attacks.
They demonstrate false positive and negative rates from 0.09
to 0.00 after refining the data to remove non-existent nodes,
whereas the rates are between 0.10 and 0.28 without refinement.
He [68] proposes the use of the Relevance Vector Machine
(RVM) using a logistic chaotic map instead of the standard
Gaussian as an estimate of the noise in the output signal.
The results of classifying the KDD99 dataset with both RVM
and SVM are compared using receiver operating characteristic
curves and required number of vectors. The results indicate
that the RVM has lower false alarm rates at a given detection
probability, and generates fewer vectors to handle a similar
number of records.

Those that do not fit into one of the neat categories above
are also worth examination. Kahn and Burney [70] propose
an intrusion detection system consisting of a Finite State
Machine (FSM) that uses Push Down Automata (PDA) to
perform attack-instance storage. The results of using FSM
as a NID are not clearly demonstrated, as the accuracy and
false positive rates are not specified. Vijayasarathy et al. [81]
propose a lightweight DoS classifier framework to operate on
both the TCP and User Datagram Protocol (UDP) protocols.
The framework uses packet windowing to split input traffic
into subsets, uses the TCP flags to define six categories T}
through 7§, and cross-validation to determine the threshold
beyond which an attack is assumed to be taking place. Accuracy
increased and false alarm rate decreased as the window size
increased, however the authors note the threshold will have to
be set by an experienced network administrator. Faizal et al.
[87] proposes a method of detecting anomalies based on the
number of connections during a one second period. The results
of this detection are compared assuming all traffic is normal.
The detection rate increases to 85.9%, while the false positive
rate increases to 3.2%. Torrano-Gimenez et al. [96] propose
a new web application firewall to detect attacks on a web-
based application. The firewall is provided with an Extensible
Markup Language (XML) file containing a thorough descrip-
tion of the web application’s normal behavior, and thresholds
providing some flexibility in the definition of normal behavior
for web applications. Any traffic exceeding the thresholds are
considered to be an attack. The performance of the firewall
using an XML normal operation description is excellent, de-
tecting all attempted web attacks. However, the authors note
that automated description of the normal operation descrip-
tions would be necessary for implementation on a large scale.
Ye et al. [100] propose an anomaly detection system using
a simple Hidden Markov Model (HMM). The assumption is
made that all network behaviors are normal within a given
time window. If the network behavior deviates from the normal
behaviors, then the behavior is assumed to be an attack. The
HMM is found to be capable of detecting attacks, although not
the type of attack. Tuncer and Tatar [80] propose an embedded
system to detect DoS attacks in real time. The embedded system
uses a programmable system on a chip to train on traffic patterns
and generate alarms during the test phase. Boolean association
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rules are derived during the training phase based on five traffic
attributes, and the chip is then programmed to recognize traffic
matching those rules as DoS attacks. Changguo et al. [107]
modify the standard Apriori algorithm with fuzzy association
rules mining, and apply the technique to wireless network
intrusion detection. Experimentation shows a reduction in the
number of candidate “itemsets” with the proposed method.
Zhu et al. [102] present an attack on semi-supervised classifiers
by injecting fake unlabeled instances. An algorithm to generate
misleading instances is provided, influence on the classifier is
demonstrated, and a possible defense involving self-training
by comparing labeled and unlabeled instances is proposed.
Misleading instances are found to reduce the accuracy of the
Naive Bayes and self-trained-based Naive Bayes classifiers, but
self-training attenuated the decrease in accuracy.

Section VII presents the pitfalls and lessons learned during
this review of the field. It also provides exemplary papers
which the reader can use as templates for improving their own
future work.

VII. LESSONS LEARNED

Trends in publication of research in the Network Intrusion
Detection (NID) field explored in Section VI reveal several
areas for improvement. The four common pitfalls uncovered
are:

1) Failure to identify distance measures selected

2) Failure to provide adequate details (such as mode or

parameterization) on selected distance measures

3) Failure to explain why the distance measure(s) are chosen

4) Failure to treat distance measure and parameterization as

another experimental factor in performance evaluation

When authors fall prey to these pitfalls, experiment repeata-
bility and validation is compromised. Furthermore, benefits
discovered about the distance measures during the research
cannot be fully realized by the field. In the remainder of this
section, these pitfalls are described in detail and mitigation
strategies are discussed. For each category we also suggest
exemplars in the field which demonstrate the recommended
guidance for future research.

The first pitfall is that identification of distance measures
are often missing. In the field sample of 100 papers, only 40%
identified the name of the distance measure used. Since distance
measure choice is central to algorithm performance in anomaly
detection, researchers should clearly identify which distance
measures they use, and identify how they are using them.
Researchers should also use standardized names for distance
measures, and we recommend the Encyclopedia of Distances
[4] which will assist this endeavor. Examples of papers which
do this very well are Gong’s paper with a description of a sum of
squares distance used for thresholding [26] and Borah’s paper
describing the use of a power (p,r)-distance for a K-nearest
neighbors algorithm [28]. In each of these papers, the authors
clearly identify the distance measures they used and provide
formulas.

Second, while some authors indicate which distance mea-
sures are used, far fewer give the implementation details such
as formulas or parameter settings. In the field sample, only

32% gave a specific mathematical formulation for their distance
measure. Parameter settings are also important in some of
the distance measures, but are often overlooked when authors
present their research. For example, when using power (p, r)-
distance, p and r can be selected independently, but are often
assumed to be the same, as in the Euclidean distance formu-
lation (p = =2). Another example of potential ambiguity
is revealed when calculating the various Entropy-related dis-
tances, where distance depends on the selected log base. In
most cases, a default log base of 2 is assumed, but it is possible
to select another base. Another pitfall of in the category is
the use of “default settings” of an off-the-shelf algorithm with
the assumption that those default settings will remain static in
perpetuity. Machine learning libraries are frequently updated,
and default settings used during the time of research may have
been changed by the time the research is published. An even
more dangerous practice occurs when researchers do not realize
that when they choose an off-the-shelf algorithm without fully
understanding the implementation details, they may not realize
that default settings have been selected for them—these settings
may be even be sub-optimal for the phenomenon they are
studying.

An exemplar paper in this category is by Arshadi and
Jahangir [31], which identified the distance measure, provided a
formula, and provided detailed parameter and variable descrip-
tions for the use of entropy as a distance measure to determine
randomness of the inter-arrival rate of packets. This level of
documentation greatly facilitates recreating the experiment for
validation and comparison with future research.

Third, even when implementation details are known and
provided, researchers often fail to indicate why the choices
are made. A failure to explain these choices leads to a missed
opportunity to pass on important learning opportunities to the
reader. This behavior can slow the general progress of advance-
ment in the field.

Palmieri provides an exemplar in this category: he explains
why he uses squared-Euclidean distance as the measure for
determining nearest- and false-nearest neighbors as feature-
space dimensions are increased one-by-one [44].

Finally, unlike the exemplary articles described in Section V,
the sample indicates that in the vast majority of research a single
distance or similarity measure is selected, and the authors do
not explore the tradespace of distance measure alternatives or
even alternative parameter settings. In our sample of the field,
only two authors (2%) explored distance measure choice as a
factor in experiment design.

While most research didn’t evaluate more than one dis-
tance measure for a single anomaly detection phase, the two
treatments we reviewed seem promising, since they provided
a framework that could be repeated with distance measures
the authors did not use. One article by Obimbo explores the
performance of classification using two measures - Euclidean
distance, and a custom measure based on a voting system [37].
Another exemplar comparison study reviewed performance of
three measures of entropy for determining the best features to
use [35]. These authors are paving the way by using distance
measure as another factor in experiment design. We recommend
future research follow this lead.
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VIII. CONCLUSION

Every experiment which utilizes Anomaly Detection (AD)
in the Network Intrusion Detection (NID) field uses distance
measures, most without much thought as to which distance
measure would be most appropriate. However, it is clear that
sometimes similarity and distance measures are used with care
in research. There are great examples to provide guidance and
to be expanded upon. We recommend adopting the following
habits to improve the quality of the research:

* Clearly name and describe all distance measures and
parameters used throughout the research endeavor. When
present in the Encyclopedia of Distances [4] standardize
the measure’s name.

* Borrow distance measurement methods from other fields
which have similar challenges, such as natural language
processing, and examine solutions that are unused in the
NID field.

e Consider exploring the use of different distance and simi-
larity measures as part of the experiment to determine how
they affect detection rate.

* Incorporate flexible methods for capturing and express-
ing data values to make distance measures comparable.
For example, build a graph distance matrix (discussed in
Section VII), as used by Tan e al. [23] as a method of
comparison.

e Develop techniques to compare graph distance matrices
without visualization, and determine of which thresholds
are most useful under certain conditions.

e Gain a better understanding of how distance measures
challenge the intuitive understanding of the term closest,
and develop visualizations and simulations to aid in that
understanding how to set parameters appropriate for the
problem space.
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