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1 Introduction
When crunching data to model business decisions, we are most typically using supervised and unsupervised
learning methods.

Algorithms are often grouped by similarity in terms of their function (how they work). Again, there will
be no perfect classification of machine learning algorithms and there is also no way to exhaust all machine
learning algorithms. We only list those most commonly used algorithms here based on similarity to keep
things simple.

For illustrative purposes, I will use some examples from the well-known Introduction to Statistical
Learning: with Applications in R https://www.statlearning.com/.

This note will outline the supervised learning algorithms including statistical models and those developed by
the machine learning community. We will build a decision tree model for the diabetes data set in the case
study.
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2 Model and Instance-based Supervised Algorithms
Machine learning can be broadly categorized into two types: instance-based learning and model-based learning.
Both approaches have their unique methodologies and use cases.

Instance-based Learning

Instance-based learning, also known as lazy learning, involves storing the training data and using it to make
predictions directly. The algorithm does not build an explicit model but relies on the entire data set to
respond to queries.

Instance-based learning algorithms compare new problem instances with instances seen in training,
which have been stored in memory. Predictions are made based on the similarity between new data points
and stored instances.

Among instance-based learning algorithms, K-Nearest Neighbors (K-NN) is the most common
instance-based learning algorithm. It classifies a data point based on how its neighbors are classified. The ‘K’
value represents the number of neighbors to consider.

The advantages of instance-based learning algorithms are their simplicity, adaptability, and versatility.
The disadvantages are storage resource, prediction speed, and noisy data sensitivity.

Model-based Learning

Model-based learning, also known as eager learning, involves building a model from the training data before
making predictions. This model captures the underlying patterns in the data, which can then be used to
make predictions on new data. We have already learned a few of them

• Linear Regression: This algorithm models the relationship between a dependent variable and one or
more independent variables by fitting a linear equation to the observed data.

• Logistic Regression: A classification algorithm that models the probability of a binary outcome
based on one or more predictor variables.

• Neural Networks: Complex models inspired by the human brain, capable of capturing intricate
patterns in the data through layers of interconnected nodes.

• Decision Trees: These models use tree-like structures where nodes represent decisions based on the
value of input features, leading to an output prediction. This note will discuss tree-based algorithms.

The next table compares the two categories of algorithms from different perspectives.
include_graphics("img/InstabceModel-basedLearning.jpg")

In the next subsections, we will provide some of the instance-based and model-based algorithms with some
illustrative examples (based on small data sets) to explain the rough ideas of these algorithms.

2.1 LOESS Regression
Regression is concerned with modeling the relationship between variables that is iteratively refined using a
performance measure defined based on errors in the predictions made by the model. Regression methods
are a workhorse of statistics and have been the backbone of statistical machine learning. The most popular
regression algorithms are:

1. Ordinary Least Squares Regression (OLSR)

2. Linear Regression

3. Logistic Regression
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Figure 1: The comparison of instance-based and model-based supervised learning algorithms

4. Step-wise Regression

5. LOcally Estimated Scatter-plot Smoothing (LOESS) - a nonparametric regression.

In this subsection, we will use an example to show one of the robust distribution free single variable regression
algorithm - locally weighted scatter-plot smoothing (LOESS) - using a built-in R function (without giving
the details of the algorithm). Since it is a single variable regression, the performance of the performance can
be easily visualized.

The LOESS regression is based on two variables Sales and Price in the data set Carseats in the book ISLR.
data("Carseats")
pander(head(Carseats))

Table 1: Table continues below

Sales CompPrice Income Advertising Population Price ShelveLoc
9.5 138 73 11 276 120 Bad

11.22 111 48 16 260 83 Good
10.06 113 35 10 269 80 Medium
7.4 117 100 4 466 97 Medium
4.15 141 64 3 340 128 Bad
10.81 124 113 13 501 72 Bad

Age Education Urban US
42 17 Yes Yes
65 10 Yes Yes
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Age Education Urban US
59 12 Yes Yes
55 14 Yes Yes
38 13 Yes No
78 16 No Yes

lw1 = loess(Sales ~ Price, data = Carseats)
plot(Sales ~ Price, data = Carseats, pch=19, cex=0.8)
j = order(Carseats$Price) # sort the data vector and returns the index

# of the values of the original data vector
lines(Carseats$Price[j],lw1$fitted[j],col="red",lwd=3)
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Figure 2: Figure 5. LOESS regression: Sales Prices

The loess() is a data-driven nonparametric regression (local polynomial regression including linear regression),
in other words, the explicit model parameters in an explicitly expressed model to estimate. loess regression
is analogous to single variable regression such as simple linear and nonlinear regression models.

To plot the smooth fitted regression curve, we need to use function order() the indices of the original data
vector after it was ordered. For example,
x = c(3, 1, 0, 4, -5)
order(x)

[1] 5 3 2 1 4

## The above index can sort the data below
x[order(x)]

[1] -5 0 1 3 4
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We can use the loess nonparametric regression model to predict as usual using the generic function predict()
with an input data frame.
lw1 = loess(Sales ~ Price, data = Carseats)
predict(lw1, data.frame(Price =c(134,121)),se = TRUE) # new data must be within

$fit
[1] 6.751464 7.371896

$se.fit
[1] 0.2261343 0.2216638

$residual.scale
[1] 2.518948

$df
[1] 393.7244

# Existing price range

2.2 Regularized Regression
We have discussed some degree of detail in linear and logistic regression models from both classical statistics
perspective and machine learning perspective in terms of model training and performance evaluation.

The following regularized regression algorithms are recently developed learning algorithms modified from
classical statistics.

• Ridge Regression

Ridge regression does not reduce the number of correlated feature variables. It brings bias to the estimated
regression coefficients to reduce the impact of multi-correlated feature variables. In other words, it sacrifices
the unbiasedness of the estimated regression to gain the stability of the estimation.

• Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO filters the feature variables with a small magnitude of the absolute regression coefficients. All
numerical feature variables must be standardized when using LASSO regression for prediction. Since some of
the feature variables will be filtered out from the model. It is considered a dimension reduction method that
has become a popular tool in the machine learning community.

The following figure explains the relationships between regular least square regression, ridge regression, and
LASSO.

Because both ridge and LASSO fall into the same theoretical framework (although functioning in very
different ways), Stanford statisticians developed an R library, glmnet to implement various regularized
regression including both of these two regularized regression methods.

2.3 Instance-based Algorithms
First of all, observations/samples/instances all mean the same thing in machine learning.

The instance-based learning model is a decision problem with instances or examples of training data that
are deemed important or required to the model. Such methods typically build up a database of example
data and compare new data to the database using a similarity measure in order to find the best match and
make a prediction. For this reason, instance-based methods are also called winner-take-all methods and
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Figure 3: Figure 6. Relationship between least square, ridge, and LASSO regressions.

memory-based learning (sometimes also called lazy learning. Focus is put on the representation of the stored
instances and similarity measures used between instances.

The most popular instance-based algorithms are:

• k-Nearest Neighbor (kNN)
• Support Vector Machines (SVM)

Both kNN and SVM are intuitive. The more instances the more the accuracy. ISLR (2nd edition) has case
studies using R for kNN (using knn() in library {class} in section 4.7.6, starting from page 181) and SVM
(using svm() in library {e1071} in sections 9.6.1 and 9.6.2, starting from page 389).

2.4 Naïve Bayes - A Bayesian Algorithm
Bayesian methods are those that explicitly apply Bayes’ Theorem for problems such as classification and
regression. There several Bayesian algorithms have been developed so far. We only introduce the basic but
commonly used in practice - Naïve Bayes.

The Naïve Bayes classifier is a simple probabilistic classifier that is based on the Bayes theorem but with
strong assumptions regarding independence. Historically, this technique became popular with applications in
email filtering, spam detection, and document categorization. Although it is often outperformed by other
techniques, and despite the naïve design and oversimplified assumptions, this classifier can perform well in
many complex real-world problems.

The theory behind Naïve Bayes is straightforward as depicted in the following.

There are several libraries in R that have the function to implement aïve Bayes. ISLR has a lab on the
application of aïve Bayes (section 4.7.5, starting from page 180) using the naiveBayes() function in R library
{e1071}.
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Figure 4: Figure 7. Instance-based learning algorithms: KNN and SVM.

Figure 5: Figure 14. Naive Bayes Classifier.
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3 Decision Tree Algorithms
https://github.com/pengdsci/STA551/blob/main/w07/img/w07.1-GIFtree.gif

The Decision Tree (DT) algorithm is based on conditional probabilities. Unlike the other classification
algorithms, decision trees generate rules. A rule is a conditional statement that can easily be understood by
humans and easily used within a database to identify a set of records. It is easy to interpret and implement
in real-world applications. Among several basic tree-based algorithms, Classification and Regression Tree
(CART) is most frequently used in practice.

This subsection focuses on the basic decision tree with some technical description of steps in decision tree
induction. The general structure of a decision tree algorithm is in the following example of predicting the
survival of Titanic passengers.

Figure 6: Figure 8. Illustration of decision tree algorithm: predicting Titanic survival.

The above decision tree involves three variables: sex, age, and sibsp (sibling and spouse). We can easily
convert the tree to a set of rules (conditional statements) to make a prediction of the survival status for a
new incoming data point.

3.1 Structure and Technical Terms
The following diagram illustrates the basic structure of a decision tree.

Root Node: It represents the entire population or sample and this further gets divided into two or more
homogeneous sets.

Splitting: It is a process of dividing a node into two or more sub-nodes.

Decision Node: When a sub-node splits into further sub-nodes, then it is called the decision node.

Leaf / Terminal Node: Nodes that do not split are called Leaf or Terminal Node.

Pruning: When we remove sub-nodes of a decision node, this process is called pruning. We can say the
opposite process of splitting.

Branch / Sub-Tree: A subsection of the entire tree is called a branch or sub-tree.

Parent and Child Node: A node, which is divided into sub-nodes is called a parent node of sub-nodes
whereas sub-nodes are the child of a parent node.
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Figure 7: Figure 9. Decision tree structure.

The following example based on toy data illustrates how a decision grows and how to use a decision tree to
make predictions.

The toy data set is given below.

Figure 8: Figure 10. Decision tree structure using a toy data.

The fully grown tree is given below (note the variable class is the binary response variable).
DataSet = data.frame(
Age = c("Youth", "Youth", "Middle_aged", "Senior", "Senior","Senior","Middle_aged","Youth","Youth","Senior","Youth","Middle_aged",

"Middle_aged","Senior"),
Income = c("High","High","High","Medium","Low", "Low","Low","Medium","Low","Medium","Medium","Medium","High","Medium"),
Student = c("No", "No","No","No","Yes","Yes","Yes","No","Yes","Yes","Yes",

"No","Yes","No"),
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Figure 9: Figure 11. Fully grown decision tree using a toy data.

CreditRating = c("Fair", "Excellent","Fair","Fair","Fair","Excellent",
"Excellent","Fair","Fair","Fair","Excellent","Excellent",
"Fair","Excellent"),

Class = c("No", "No", "Yes", "Yes","Yes","No","Yes", "No", "Yes","Yes",
"Yes","Yes","Yes","No")

)
#pander(DataSet)

3.2 Decision Tree Growing - Impurity Measures
Growing a decision tree is an iterative process of splitting the feature space into some sub-spaces according to
certain criteria defined based on feature variables. The predictive performance of a decision is dependent on
the size of the trained tree. A small size will cause underfitting issues and a large size will result in overfitting
issues.

The questions are (1) how to control the size of a decision to obtain the best performance; (2) how to select
the feature variables to define the root and subsequent child nodes; (3) how to split a feature variable.

Gini index and entropy are the two popular impurity measures commonly used in decision tree induction.

3.2.1 Gini Index

• Gini Index considers a split for each attribute (for a continuous attribute, usually considers binary
split). The Gini Index measures the impurity of subgroups (D) split by a feature variable.
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Gini(D) =
m∑

i=1
pi(1 − pi) = 1 −

m∑
i=1

p2
i

Where pi is the probability of an object that is being classified to a particular class.

For example, we calculate the Gini index using the above decision tree. The root node (age) has three child
nodes. We show how to calculate the weighted Gini index of feature variable age in the following steps.

• Weights: P(youth) = 5/14, P(middle_aged) = 4/14, P(senior) = 5/14.

• D = Youth: p1 = P (Y es) = 2/5, p2 = P (No) = 3/5, therefore, Giniyouth = 1 − p2
1 − p2

2 =
1 − 4/25 − 9/25 = 12/25

• D = Middle_aged: p1 = P (Y es) = 4/4, p2 = P (No) = 0/45, therefore, Ginimiddleaged = 1−p2
1−p2

2 =
1 − 16/16 − 0/16 = 0

• D = Senior: p1 = P (Y es) = 3/5, p2 = P (No) = 2/5, therefore, Ginisenior = 1 − p2
1 − p2

2 =
1 − 9/25 − 4/25 = 12/25

The Gini index of age is given by

Giniage = 5
14 × 12

25 + 4
14 × 0 + 5

14 × 12
25 = 5

14 × 24
25 = 12

35 ≈ 0.343.

R Function for GINI Index
GINI.calc = function(DatName, VarName, ClsName){

#
freqTB0 = table(DatName[,VarName], DatName[,ClsName])
freqTB = data.frame(NO = freqTB0[, 1], YES = freqTB0[, 2])
freqTB$Tot = freqTB$NO + freqTB$YES
freqTB$P1 = freqTB$NO/freqTB$Tot
freqTB$P2 = freqTB$YES/freqTB$Tot
freqTB$CateGINI = 1-(freqTB$P1)ˆ2 - (freqTB$P2)ˆ2
freqTB$ROWPER = (freqTB$NO + freqTB$YES)/sum(freqTB$Tot)
freqTB$ComponentGini = (freqTB$CateGINI) * (freqTB$ROWPER)
GINI.idx = sum(freqTB$ComponentGini)
GINI.idx

}

giniAge = GINI.calc(DatName=DataSet, VarName="Age", ClsName = "Class")
giniIncome = GINI.calc(DatName=DataSet, VarName="Income", ClsName = "Class")
giniStudent = GINI.calc(DatName=DataSet, VarName="Student", ClsName = "Class")
giniCreditRating = GINI.calc(DatName=DataSet, VarName="CreditRating",

ClsName = "Class")
pander(cbind(giniAge = giniAge, giniIncome = giniIncome,

giniStudent = giniStudent, giniCreditRating = giniCreditRating))

giniAge giniIncome giniStudent giniCreditRating
0.3429 0.4405 0.3673 0.4286
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We can similarly calculate the Gini index for other feature variables in the data set. When we choose a
feature variable to define the root node, we choose the feature with smallest Gini index. The
Gini index is used in the classic CART algorithm and is very easy to calculate.

3.2.2 Entropy and Information Gain

Entropy is another impurity measure that is defined by

E =
m∑

i=1
(−pi log2 pi).

Where pi is the same as that defined in the Gini index. We can find the entropy at the root node and each
child node based on the above tree based on the toy data. A low Entropy indicates that the data labels are
quite uniform.

• root (parent) node entropy (before splitting): E(D) = −(5/14) log2(5/14) − (9/14) log2(9/14) =
0.940286

• child node: youth: E(D) = −(2/5) log2(2/5) − (3/5) log2(3/5) = 0.9709506

• child node: middle_aged: perfectly pure node had entropy 0.

• child node: senior: E(D) = −(3/5) log3(2/5) − (2/5) log2(3/5) = 0.9709506

• Weighted average of entropy at child nodes: E(child) = 5
14 ×0.9709506+ 4

14 ×0+ 5
14 ×0.9709506 =

5
14 × 0.9709506 ≈ 0.3467681

• Information Gain: InfoGain = E(Parent Node) − E(Child Nodes) = 0.940286 − 0.3467681 =
0.5935179.

Information gain measures whether a further split is worthwhile.
infoGain.calc = function(DatName, VarName, ClsName){

freqTB0 = table(DatName[,VarName], DatName[,ClsName])
freqTB = data.frame(NO = freqTB0[, 1], YES = freqTB0[, 2])
freqTB$Tot = freqTB$NO + freqTB$YES
freqTB$P1 = freqTB$NO/freqTB$Tot
freqTB$P2 = freqTB$YES/freqTB$Tot
###
freqTB$ROWPER = (freqTB$NO + freqTB$YES)/sum(freqTB$Tot)
### Delete zero cell prob to calculate the entropy
pNO = sum(freqTB$NO)/sum(freqTB$Tot)
pYES = sum(freqTB$YES)/sum(freqTB$Tot)
propYES = freqTB$YES/sum(freqTB$Tot)
ParentEnt = -pNO*log2(pNO) -pYES *log2(pYES)
### entropy of child nodes
P1 = freqTB$P1
P2 = freqTB$P2
logP1 = log2(freqTB$P1)
logP2 = log2(freqTB$P2)
logP1[which(!is.finite(logP1))] = 0
logP2[which(!is.finite(logP2))] = 0
ChildEnt = (-P1*logP1 - P2*logP2)
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###
infoGain =ParentEnt - sum(ChildEnt*propYES)
#info.Gain = sum(freqTB$infoGain)
list(ParentEnt = ParentEnt, ChildEnt = ChildEnt,

propYES = propYES, infoGain = infoGain)
}

infoGain.calc(DatName=DataSet, VarName="Age", ClsName = "Class")

$ParentEnt
[1] 0.940286

$ChildEnt
[1] 0.0000000 0.9709506 0.9709506

$propYES
[1] 0.2857143 0.2142857 0.1428571

$infoGain
[1] 0.5935179

entAge = infoGain.calc(DatName=DataSet, VarName="Age", ClsName = "Class")$infoGain
entIncome = infoGain.calc(DatName=DataSet, VarName="Income", ClsName = "Class")$infoGain
entStudent = infoGain.calc(DatName=DataSet, VarName="Student", ClsName = "Class")$infoGain
entCreditRating = infoGain.calc(DatName=DataSet, VarName="CreditRating", ClsName = "Class")$infoGain
pander(cbind(infoGainAge = entAge, infoGainIncome = entIncome, infoGainStudent = entStudent, infoGainCreditRating = entCreditRating))

infoGainAge infoGainIncome infoGainStudent infoGainCreditRating
0.5935 0.3612 0.4756 0.3783

3.3 Binary v.s. Multi-way Splits
In principle, trees are not restricted to binary splits but can also be grown with multi-way splits - based
on the Gini index or other selection criteria. However, the (locally optimal) search for multi-way splits in
numeric variables would become much more burdensome. Hence, tree algorithms often rely on the greedy
forward selection of binary splits where subsequent binary splits in the same variable can also represent
multi-way splits.

3.4 Boosted Trees - Ensemble Algorithms
Ensemble methods are models composed of multiple weaker models that are independently trained and whose
predictions are combined in some way to make the overall prediction.

Much effort is put into what types of weak learners to combine and the ways in which to combine them. This
is a very powerful class of techniques and as such is very popular.

3.4.1 Bootstrapped Aggregation (Bagging)

With the understanding of regular decisions, we can
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Figure 10: Figure 12. Demonstration of bootstrap aggregation algorithm.

3.4.2 Random Forest

Random forest (RF) algorithms make output predictions by combining outcomes from a sequence of decision
trees. Each tree is constructed independently and depends on a random vector sampled from the input data,
with all the trees in the forest having the same distribution. The predictions from the forests are averaged
using bootstrap aggregation and random feature selection. RF models have been demonstrated to be robust
predictors for both small sample sizes and high dimensional data.

The following diagram illustrates how RF was constructed and how the decision is made based on the set of
individual trees.

4 Case Study - Predicting Diabetes
This is a new model that is different from logistic and neural network models. We load the analytic data set.
Pima = read.csv("https://pengdsci.github.io/STA551/w09/AnalyticPimaDiabetes.csv")[,-1]
# We use a random split approach
n = dim(Pima)[1] # sample size
# caution: using without replacement
train.id = sample(1:n, round(0.7*n), replace = FALSE)
train = Pima[train.id, ] # training data
test = Pima[-train.id, ] # testing data

4.1 rpart Library
we will rpart() to write a wrapper so we can pass the arguments of purity measures and penalty measures
to construct different decision trees. The cross-validation method will be used to select the optimal decision
tree as the candidate predictive to compare with the logistic model in the previous section.
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Figure 11: Figure 13. Demonstration of random forest algorithm.

Note that rpart() has a control option that allows users to set up various control parameters
(so-called hyper-parameters) to allow the function to identify the optimal tree. One of those
control parameters is the number of cross-validation when pruning the decision. Once xval is
specified, rpart() prunes the tree automatically based on the given control parameters. This is
internal k-fold cross-validation for identifying an optimal tree based on the information provided
in the argument parms in which the purity measures and penalty matrix. More information can
be found in the article https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

rpart() syntax

tree = rpart(modelFormula, # model formula similar to that in the logistic models
data ,
na.action = na.rpart, # By default, deleted if the outcome is missing,

# kept if features are missing
method = "class", # Classification form factor
model = FALSE, # keep a copy of the model frame in the result? I

x = FALSE, # keep a copy of the x matrix in the result.
y = TRUE, # keep a copy of the dependent variable in the result.

# If missing and model is supplied this defaults to FALSE
parms = list( # loss matrix. Penalize false positive or negative more heavily

loss = matrix(c(0,b,c,0), ncol = 2), # b = FP, c = FN
split = purity), # "gini" or "information"

## rpart algorithm options (These are defaults)
control = rpart.control(
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minsplit = 20, # minimum number of observations required before split
minbucket= 10, # minimum number of observations in any terminal node, # default = minsplit/3
cp = 0.01, # complexity parameter used as the stopping rule,

# 0.02 -> small tree
maxcompete = 4, # number of competitor splits retained in the output
maxsurrogate = 5, # number of surrogate splits retained in the output
usesurrogate = 2, # how to use surrogates in the splitting process
xval = 10, # number of cross-validations
surrogatestyle = 0, # controls the selection of the best surrogate
maxdepth = 30 # maximum depth of any node of the final tree)

)

rpart() has a lot of flexibility to construct decision trees as it has user controls. It is particularly useful in
applications where the costs of false positive and false negative are different.

Next, we write a wrapper so we can build different decision trees conveniently.
# arguments to pass into rpart():
# 1. data set (training /testing);
# 2. Penalty coefficients
# 3. Impurity measure
##
tree.builder = function(in.data, fp, fn, purity){

tree = rpart(diabetes ~ ., # including all features
data = in.data,
na.action = na.rpart, # By default, deleted if the outcome is missing,

# kept if predictors are missing
method = "class", # Classification form factor
model = FALSE,
x = FALSE,
y = TRUE,

parms = list( # loss matrix. Penalize false positives or negatives more heavily
loss = matrix(c(0, fp, fn, 0), ncol = 2, byrow = TRUE),
split = purity), # "gini" or "information"

## rpart algorithm options (These are defaults)
control = rpart.control(

minsplit = 10, # minimum number of observations required before split
minbucket= 10, # minimum number of observations in

# any terminal node, default = minsplit/3
cp = 0.01, # complexity parameter for stopping rule,

# 0.02 -> small tree
xval = 10 # number of cross-validation )
)

)
}

Using the above function, we define six different decision tree models in the following.

• Model 1: gini.tree.11 is based on the Gini index without penalizing false positives and false negatives.

• Model 2: info.tree.11 is based on entropy without penalizing false positives and false negatives.

• Model 3: gini.tree.110 is based on the Gini index: the cost of false negatives is 10 times the positives.

• Model 4: info.tree.110 is based on entropy: the cost of false negatives is 10 times the positives.
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• Model 5: gini.tree.101 is based on the Gini index: the cost of a false positive is 10 times the negatives.

• Model 6: info.tree.101 is based on entropy: the cost of a false positive is 10 times the negatives.

The tree diagram of the above two regular decision models is given below.
## Call the tree model wrapper.
gini.tree.1.1 = tree.builder(in.data = train, fp = 1, fn = 1, purity = "gini")
info.tree.1.1 = tree.builder(in.data = train, fp = 1, fn = 1, purity = "information")
gini.tree.1.10 = tree.builder(in.data = train, fp = 1, fn = 10, purity = "gini")
info.tree.1.10 = tree.builder(in.data = train, fp = 1, fn = 10, purity = "information")
## tree plots
par(mfrow=c(1,2))
rpart.plot(gini.tree.1.1, main = "Tree with Gini index: non-penalization")
rpart.plot(info.tree.1.1, main = "Tree with entropy: non-penalization")
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Figure 12: Figure 14. Non-penalized decision tree models using Gini index (left) and entropy (right).

par(mfrow=c(1,2))
rpart.plot(gini.tree.1.10, main = "Tree with Gini index: penalization")
rpart.plot(info.tree.1.10, main = "Tree with entropy: penalization")

4.2 ROC for Model Selection
We built 4 different decision tree models previously. Next, we use ROC analysis to select the best among the
four candidate models.
# function returning a sensitivity and specificity matrix
SenSpe = function(in.data, fp, fn, purity){

cutoff = seq(0,1, length = 20) # 20 cut-offs including 0 and 1.
model = tree.builder(in.data, fp, fn, purity)
## Caution: decision tree returns both "success" and "failure" probabilities.
## We need only "success" probability to define sensitivity and specificity!!!
pred = predict(model, newdata = in.data, type = "prob") # two-column matrix.
senspe.mtx = matrix(0, ncol = length(cutoff), nrow= 2, byrow = FALSE)
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Figure 13: Figure 15. penalized decision tree models using Gini index (left) and entropy (right).

for (i in 1:length(cutoff)){
# CAUTION: "pos" and "neg" are values of the label in this data set!
# The following line uses only "pos" probability: pred[, "pos"] !!!!
pred.out = ifelse(pred[,"pos"] >= cutoff[i], "pos", "neg")
TP = sum(pred.out =="pos" & in.data$diabetes == "pos")
TN = sum(pred.out =="neg" & in.data$diabetes == "neg")
FP = sum(pred.out =="pos" & in.data$diabetes == "neg")
FN = sum(pred.out =="neg" & in.data$diabetes == "pos")
senspe.mtx[1,i] = TP/(TP + FN)
senspe.mtx[2,i] = TN/(TN + FP)
}
## A better approx of ROC, need library {pROC}
prediction = pred[, "pos"]
category = in.data$diabetes == "pos"
ROCobj <- roc(category, prediction)
AUC = auc(ROCobj)
##
list(senspe.mtx= senspe.mtx, AUC = round(AUC,3))

}

The above function has three arguments for users to choose different types of decision trees including the 4
trees discussed in the previous subsection. Next, we use this function to build 6 different trees and plot their
corresponding ROC curves so we can see the global performance of these tree algorithms.
giniROC11 = SenSpe(in.data = train, fp=1, fn=1, purity="gini")
infoROC11 = SenSpe(in.data = train, fp=1, fn=1, purity="information")
giniROC110 = SenSpe(in.data = train, fp=1, fn=10, purity="gini")
infoROC110 = SenSpe(in.data = train, fp=1, fn=10, purity="information")
giniROC101 = SenSpe(in.data = train, fp=10, fn=1, purity="gini")
infoROC101 = SenSpe(in.data = train, fp=10, fn=1, purity="information")

18



Next, we plot the ROC curves and calculate the areas under the ROC curves for Individual decision tree
models.
par(pty="s") # set up square plot through graphic parameter
colors = c("#008B8B", "#00008B", "#8B008B", "#8B0000", "#8B8B00", "#8B4500")
plot(1-giniROC11$senspe.mtx[2,], giniROC11$senspe.mtx[1,],

type = "l",
xlim=c(0,1),
ylim=c(0,1),
xlab="1 - specificity: FPR", ylab="Sensitivity: TPR",
col = colors[1],
lwd = 2,
main="ROC Curves of Decision Trees",
cex.main = 0.9,
col.main = "navy")

abline(0,1, lty = 2, col = "orchid4", lwd = 2)
lines(1-infoROC11$senspe.mtx[2,], infoROC11$senspe.mtx[1,],

col = colors[2], lwd = 2, lty=2)
lines(1-giniROC110$senspe.mtx[2,], giniROC110$senspe.mtx[1,],

col = colors[3], lwd = 2)
lines(1-infoROC110$senspe.mtx[2,], infoROC110$senspe.mtx[1,],

col = colors[4], lwd = 2, lty=2)
lines(1-giniROC101$senspe.mtx[2,], giniROC101$senspe.mtx[1,],

col = colors[5], lwd = 2, lty = 4)
lines(1-infoROC101$senspe.mtx[2,], infoROC101$senspe.mtx[1,],

col = colors[6], lwd = 2, lty=2)
legend("bottomright", c(paste("gini.1.1, AUC =", giniROC11$AUC),

paste("info.1.1, AUC =",infoROC11$AUC),
paste("gini.1.10, AUC =",giniROC110$AUC),
paste("info.1.10, AUC =",infoROC110$AUC),
paste("gini.10.1, AUC =",giniROC101$AUC),
paste("info.10.1, AUC =",infoROC101$AUC)),
col=colors,
lty=rep(1:2,3), lwd=rep(2,6), cex = 0.8, bty = "n")

The above ROC curves represent various decision trees and their corresponding AUC. The model with the
largest AUC is considered the best decision tree among the existing ones.

4.3 Optimal Cut-off Score Determination
As usual, once the final model is determined, we need to find the optimal cut-off score for reporting the
predictive performance of the final model with the test data. Please keep in mind the optimal cut-off
determination through cross-validation must be based on the training data set.

In practical applications, one may end up with two or more final models with similar AUCs. In this case,
we need to report the performance of all final models based on the test data and let clients choose one to
deploy (and possibly leave the rest as challengers). For this reason, we write a function to determine the
optimal cut-off for a given decision tree (based on this project) since different decision trees have their own
optimal cut-off.
Optm.cutoff = function(in.data, fp, fn, purity){

n0 = dim(in.data)[1]/5
cutoff = seq(0,1, length = 20) # candidate cut off prob
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Figure 14: Figure 16. Comparison of ROC curves
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## accuracy for each candidate cut-off
accuracy.mtx = matrix(0, ncol=20, nrow=5) # 20 candidate cutoffs and gini.11
##
for (k in 1:5){

valid.id = ((k-1)*n0 + 1):(k*n0)
valid.dat = in.data[valid.id,]
train.dat = in.data[-valid.id,]
## tree model
tree.model = tree.builder(in.data, fp, fn, purity)
## prediction
pred = predict(tree.model, newdata = valid.dat, type = "prob")[,2]
## for-loop
for (i in 1:20){

## predicted probabilities
pc.1 = ifelse(pred > cutoff[i], "pos", "neg")
## accuracy
a1 = mean(pc.1 == valid.dat$diabetes)
accuracy.mtx[k,i] = a1

}
}

avg.acc = apply(accuracy.mtx, 2, mean)
## plots
n = length(avg.acc)
idx = which(avg.acc == max(avg.acc))
tick.label = as.character(round(cutoff,2))
##
plot(1:n, avg.acc, xlab="cut-off score", ylab="average accuracy",

ylim=c(min(avg.acc), 1),
axes = FALSE,
main=paste("5-fold CV optimal cut-off \n ",purity,"(fp, fn) = (", fp, ",", fn,")" ,

collapse = ""),
cex.main = 0.9,
col.main = "navy")
axis(1, at=1:20, label = tick.label, las = 2)
axis(2)
points(idx, avg.acc[idx], pch=19, col = "red")
segments(idx , min(avg.acc), idx , avg.acc[idx ], col = "red")

text(idx, avg.acc[idx]+0.03, as.character(round(avg.acc[idx],4)),
col = "red", cex = 0.8)

}

For demonstration, we use the above function to calculate the optimal cut-off of 6 decision trees constructed
earlier in the following.
par(mfrow=c(3,2))
Optm.cutoff(in.data = train, fp=1, fn=1, purity="gini")
Optm.cutoff(in.data = train, fp=1, fn=1, purity="information")
Optm.cutoff(in.data = train, fp=1, fn=10, purity="gini")
Optm.cutoff(in.data = train, fp=1, fn=10, purity="information")
Optm.cutoff(in.data = train, fp=10, fn=1, purity="gini")
Optm.cutoff(in.data = train, fp=10, fn=1, purity="information")

As anticipated, different trees have their own optimal cut-off. Please keep in mind that the cut-off is random
(based on the randomly split training data), there may be different cut-offs in different runs. It is dependent
on the tree size, sometimes, we may end up with multiple optimal cut-offs. Technically speaking, we choose
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Figure 15: Figure 17: Plot of optimal cut-off determination
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any one of them for implementation. A better recommendation is to choose the average of these multiple
cut-offs and the final cut-off to be used on the testing data set.

23


	Introduction
	Model and Instance-based Supervised Algorithms
	LOESS Regression
	Regularized Regression
	Instance-based Algorithms
	Naïve Bayes - A Bayesian Algorithm

	Decision Tree Algorithms
	Structure and Technical Terms
	Decision Tree Growing - Impurity Measures
	Gini Index
	Entropy and Information Gain

	Binary v.s. Multi-way Splits
	Boosted Trees - Ensemble Algorithms
	Bootstrapped Aggregation (Bagging)
	Random Forest


	Case Study - Predicting Diabetes
	rpart Library
	ROC for Model Selection
	Optimal Cut-off Score Determination


