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1 Introduction
There are a lot of debates on the difference between statistics and machine learning in statistics and machine
learning communities. Certainly, statistics and machine learning are not the same although there is an
overlap. A major difference between machine learning and statistics is indeed their purpose.

• Statistics focuses on the inference and interpretability of the relationships between variables.

• Machine learning focuses on the accuracy of the prediction of future values of (response) variables and
detecting hidden patterns. Machine learning is traditionally considered to be a subfield of artificial
intelligence, which is broadly defined as the capability of a machine to imitate intelligent human
behavior.

A lot of statistical models can make predictions, but predictive accuracy is not their strength while machine
learning models provide various degrees of interpretability sacrifice interpretability for predictive power.
For example, regularized regressions as machine learning algorithms are interpretable but neural networks
(particularly multi-layer networks ) are almost uninterpretable.

Statistics and machine learning are two of the key players in data science. As data science practitioners, our
primary interest is to develop and select the right tools to build data solutions for real-world applications.

2 Some Machine Learning Jargon
Before demonstrating how some classical models are used as machine learning algorithms, we first introduce
a partial list of machine learning jargon. This terms

Statistics Machine Learning Comments
data point, record, row of
data

example, instance Both domains also use “observation,” which
can refer to a single measurement or an entire
vector of attributes depending on context.

response variable,
dependent variable

label, output Both domains also use “target.” Since
practically all variables depend on other
variables, the term “dependent variable” is
potentially misleading.

regressions supervised learners, machines Both estimate output(s) in terms of input(s).
regression intercept bias the default prediction of a linear model in the

special case where all inputs are 0.
Maximize the likelihood
of estimating model
parameters

Minimize the entropy to derive
the best parameters in
categorical regression or
maximize the likelihood for
continuous regression.

For discrete distributions, maximizing the
likelihood is equivalent to minimizing the
entropy.

logistic/multinomial
regression

maximum entropy, MaxEnt They are equivalent except in special
multinomial settings like ordinal logistic
regression.

3 Logistic Regression Model Revisited
Recall that the binary logistic regression model with k feature variables x1, x2, · · · , xk is given by
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P [Y = 1
∣∣(x1, x2, · · · , xk)] = exp(w0 + w1x1 + w2x2 + · · · + wkxk)

1 + exp(w0 + w1x1 + w2x2 + · · · + wkxk)

=
exp(w0 +

∑k
i=1 wixi)

1 + exp(w0 +
∑k

i=1 wixi)
= 1

1 + exp[−(w0 +
∑k

i=1 wixi)]

where w0, w1, · · · , wn are regression coefficients. Let

π(x1, x2, · · · , xk) = P [Y = 1
∣∣(x1, x2, · · · , xk)].

be the probability of success given the covariate pattern (x1, x2, · · · , xk). We can re-express the logistic
regression model in the following form

log
(

π(x1, x2, · · · , xk)
1 + π(x1, x2, · · · , xk)

)
= w0 +

k∑
i=1

wixi

where

π(x1, x2, · · · , xk)
1 + π(x1, x2, · · · , xk) = odds of success for given (x1, x2, · · · , xk).

Therefore, the general logistic regression model is also called log odds regression. This also makes logistic
regression interpretable since the regression coefficient wi is the change of log odds of success when the
covariate xi increases by a unit and all other covariates remain unchanged (for i = 1, 2, · · · , k).

Let z = w0 +
∑k

i=1 wixi be the linear combination of predictors, that impact the success probability, then

π(z) = 1
1 + exp(−z) for − ∞ < z < ∞.

Note that π(z) is the well-known logistic function. The curve of the logistic function is given by
x = seq(-5, 5, length = 100)
y = 1/(1+exp(-x))
plot(x,y, type = "l", lwd = 2, xlab ="z ", ylab = expression(pi(z)),

main = "Logistic Curve", col = "blue")
text(-3, 0.8, expression(pi(z) ==frac(1,1+exp(-z))), col = "blue")

The main feature of logistic function f(z) is its S-shape curve with a range f(z) ∈ [0, 1], domain z ∈ (−∞, ∞),
and f(z) = 1/2. Other functions have the same properties as logistic functions. These types of functions are
called sigmoid functions.

Note that the inverse of the logistic function is called the logit function that is given by

f−1(x) = log
(

x

1 − x

)
.

The logistic regression is also called logit regression. It is also called log odds regression because
P (Y = success)/[1 − P (Y = success)] is the odds of success.
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Figure 1: Figure 5. The curve of the logistic function.

4 Working Data Set and EDA
This section introduces the data set and prepares an analytic data set to perform predictive modeling using
both classical statistical methods and machine learning algorithms.

4.1 Framingham Study Data
The Framingham Data is collected from an ongoing cardiovascular study on residents of the town of
Framingham, Massachusetts. The goal of this application is to predict whether the patient has a 10-year risk
of future coronary heart disease (CHD). The data set contains 4000 records and 15 variables that provide the
patients’ demographic and medical information.

A brief description of the variables is given below.

male: male ( = 1) or female ( = 0)

age: Age of the patient;

education: A categorical variable of the participants’ education, with the levels: Some high school (1), high
school/GED (2), some college/vocational school (3), college (4)

currentSmoker: Current cigarette smoking at the time of examinations

cigsPerDay: Number of cigarettes smoked each day

BPmeds: Use of Anti-hypertensive medication at exam

prevalentStroke: Prevalent Stroke (0 = free of disease)

prevalentHyp: Prevalent Hypertensive. The subject was defined as hypertensive if treated

4



diabetes: Diabetic according to criteria of first exam treated

totChol: Total cholesterol (mg/dL)

sysBP: Systolic Blood Pressure (mmHg)

diaBP: Diastolic blood pressure (mmHg)

BMI: Body Mass Index, weight (kg)/height (m)ˆ2

heartRate: Heart rate (beats/minute)

glucose: Blood glucose level (mg/dL)

TenYearCHD: The 10 year risk of coronary heart disease(CHD)

4.2 Exploratory Data Analysis
We first inspect the data set by creating tables and making some plots to assess the distribution of each
variable in the data set.
Framingham0 = read.csv("https://pengdsci.github.io/STA551/w08/framingham.csv")
Framingham = Framingham0
summary(Framingham0)

male age education currentSmoker
Min. :0.0000 Min. :32.00 Min. :1.000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:42.00 1st Qu.:1.000 1st Qu.:0.0000
Median :0.0000 Median :49.00 Median :2.000 Median :0.0000
Mean :0.4292 Mean :49.58 Mean :1.979 Mean :0.4941
3rd Qu.:1.0000 3rd Qu.:56.00 3rd Qu.:3.000 3rd Qu.:1.0000
Max. :1.0000 Max. :70.00 Max. :4.000 Max. :1.0000

NA's :105
cigsPerDay BPMeds prevalentStroke prevalentHyp

Min. : 0.000 Min. :0.00000 Min. :0.000000 Min. :0.0000
1st Qu.: 0.000 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.0000
Median : 0.000 Median :0.00000 Median :0.000000 Median :0.0000
Mean : 9.003 Mean :0.02963 Mean :0.005899 Mean :0.3105
3rd Qu.:20.000 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:1.0000
Max. :70.000 Max. :1.00000 Max. :1.000000 Max. :1.0000
NA's :29 NA's :53

diabetes totChol sysBP diaBP
Min. :0.00000 Min. :107.0 Min. : 83.5 Min. : 48.00
1st Qu.:0.00000 1st Qu.:206.0 1st Qu.:117.0 1st Qu.: 75.00
Median :0.00000 Median :234.0 Median :128.0 Median : 82.00
Mean :0.02572 Mean :236.7 Mean :132.4 Mean : 82.89
3rd Qu.:0.00000 3rd Qu.:263.0 3rd Qu.:144.0 3rd Qu.: 89.88
Max. :1.00000 Max. :696.0 Max. :295.0 Max. :142.50

NA's :50
BMI heartRate glucose TenYearCHD

Min. :15.54 Min. : 44.00 Min. : 40.00 Min. :0.000
1st Qu.:23.07 1st Qu.: 68.00 1st Qu.: 71.00 1st Qu.:0.000
Median :25.40 Median : 75.00 Median : 78.00 Median :0.000
Mean :25.80 Mean : 75.88 Mean : 81.97 Mean :0.152
3rd Qu.:28.04 3rd Qu.: 83.00 3rd Qu.: 87.00 3rd Qu.:0.000
Max. :56.80 Max. :143.00 Max. :394.00 Max. :1.000
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NA's :19 NA's :1 NA's :388

The above descriptive tables indicate a few variables involved in missing values. Two variables that have a
significant portion of missing values are levels of education and glucose.

The variable glucose is clinically associated with diabetes(which has only 5 missing values in it). We could
use this relationship to impute the missing values in glucose. After looking at the proportion of missing
values in the diabetes group and diabetes-free group, the missing percentage points are about 9% and 4%,
respectively.
diabetes.id = which(Framingham$diabetes == 1)
diab.glucose = Framingham[diabetes.id, "glucose"]
no.diab.glucose = Framingham[-diabetes.id, "glucose"]
#table(Framingham$diabetes)
#summary(diab.glucose)
#summary(no.diab.glucose)
plot(density(na.omit(no.diab.glucose)), col = "darkred",

main = "Distribution of Glucose Levels",
xlab = "Glucose")

lines(density(na.omit(diab.glucose)), col = "blue")
legend("topright", c("Diabetes Group", "Diabetes Free"),

lty =rep(1,2),
col=c("darkred", "blue"),
bty = "n", cex = 0.8)
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There are about 2.5% of participants in the study had diabetes. This may cause a potential imbalanced
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category issue. As anticipated, the distribution glucose levels of diabetes and diabetes-free groups are
significantly different.
NumVar = Framingham[, c(2,10:15)]
pairs(NumVar, cex = 0.3, col = "navy", main ="Pair-wise scatter plot of numerical variables")
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We will discuss imputation methods to handle missing values in related variables for algorithm-based
prediction.
sex = as.data.frame(table(Framingham$male))
colnames(sex) = c("sex", "counts")
sex$sex = ifelse(sex$sex == 1, "male", "female")
###
edu = as.data.frame(table(Framingham$education))
colnames(edu) = c("EduLevel", "counts")
edu$EduLevel = ifelse(edu$EduLevel == 1, "HS-",

ifelse(edu$EduLevel == 2, "HS",
ifelse(edu$EduLevel == 3, "Col-", "Col" )))

###
par(mfrow = c(2,2))
barplot(height=sex$counts, names = sex$sex, col = "steelblue",

main = "Distribution of Sex")
hist(Framingham$age, xlab="age", ylab="counts", col="steelblue",

main = "Age Distribution")
barplot(height=edu$counts, names = edu$EduLevel, col = "steelblue",
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main = "Distribution of Education")
hist(Framingham$cigsPerDay, xlab="cigs per day", ylab="counts",

col="steelblue",
main = "Number of Cigs Day")
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currentSmoker = as.data.frame(table(Framingham$currentSmoker))
colnames(currentSmoker) = c("currentSmoker", "counts")
currentSmoker$currentSmoker = ifelse(currentSmoker$currentSmoker == 1, "Yes", "No ")
###
BPMeds = as.data.frame(table(Framingham$BPMeds))
colnames(BPMeds) = c("BPMeds", "counts")
BPMeds$BPMeds = ifelse(BPMeds$BPMeds == 1, "Yes", "No ")
###
prevalentStroke = as.data.frame(table(Framingham$prevalentStroke))
colnames(prevalentStroke) = c("prevalentStroke", "counts")
prevalentStroke$prevalentStroke = ifelse(prevalentStroke$prevalentStroke == 1, "Yes", "No ")
###
prevalentHyp = as.data.frame(table(Framingham$prevalentHyp))
colnames(prevalentHyp) = c("prevalentHyp", "counts")
prevalentHyp$prevalentHyp = ifelse(prevalentHyp$prevalentHyp == 1, "Yes", "No ")
###
par(mfrow=c(2,2))
barplot(height=currentSmoker$counts, names = currentSmoker$currentSmoker, col = "steelblue",

main = "Smoking Status")
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barplot(height=BPMeds$counts, names = BPMeds$BPMeds, col = "steelblue",
main = "Blood Pressure Treatment")

barplot(height=prevalentStroke$counts, names = prevalentStroke$prevalentStroke, col = "steelblue",
main = "Stroke Status")

barplot(height=prevalentHyp$counts, names = prevalentHyp$prevalentHyp, col = "steelblue",
main = "Hypertension Status")
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diabetes = as.data.frame(table(Framingham$diabetes))
colnames(diabetes) = c("diabetes", "counts")
diabetes$diabetes = ifelse(diabetes$diabetes == 1, "Yes", "No ")
###
par(mfrow=c(2,2))
barplot(height=diabetes$counts, names = diabetes$diabetes, col = "steelblue",

main = "Diabetes Status")
hist(Framingham$totChol, xlab="Total Cholestrol", ylab="counts",

col="steelblue",
main = "Total Cholestrol (mg/dL)")

hist(Framingham$sysBP, xlab="Systolic BP", ylab="counts",
col="steelblue",
main = "Systolic Blood Pressure (mmHg)")

hist(Framingham$diaBP, xlab="Systolic BP", ylab="counts",
col="steelblue",
main = "Diastolic Blood Pressure (mmHg)")
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TenYearCHD = as.data.frame(table(Framingham$TenYearCHD))
colnames(TenYearCHD) = c("TenYearCHD", "counts")
TenYearCHD$TenYearCHD = ifelse(TenYearCHD$TenYearCHD == 1, "Yes", "No ")
###
par(mfrow=c(2,2))
hist(Framingham$BMI, xlab="BMI", ylab="counts",

col="steelblue",
main = "Body Mass Index")

hist(Framingham$heartRate, xlab="Heart Rate", ylab="counts",
col="steelblue",
main = "Heart Rate (beats/minute)")

hist(Framingham$glucose, xlab="Glucose", ylab="counts",
col="steelblue",
main = "Blood Glucose Level (mg/dL)")

barplot(height=TenYearCHD$counts, names = TenYearCHD$TenYearCHD, col = "steelblue",
main = "Coronary Heart Disease Status")
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The above distributional graphics indicate that BPMeds (receiving blood pressure medication), diabetes, and
prevalentStroke have small categories (less than 1%). Some of these might cause potential issues in the
final modeling. According to a recent study (https://www.bmj.com/content/BMJ/360/BMJ.j5855.Full.pdf),
smoking is a significant contributor to CHD. We will include the variable cigsPerDay in the modeling.
However, cigsPerDay needs to be regrouped to make a categorical variable with categories: 0, 1-10, 11-19,
and 20+ representing current smoking status: nonsmoker, light smoker, moderate smoker, and heavy
smoker.

4.3 Missing-data Imputation
Among variables that have missing values, education and glucose have a significant portion of missing
values. Variables cigsPerDay, BPMeds, totChol, BMI, and heartRate have less than 1% missing values. For
those with a small portion of missing values, we use mean/mode replacement method to impute the
missing values.

Variable education has slightly less than 2.5% missing values. There are no auxiliary variables in the data
that can be used to impute the missing values in education. The simple mode replacement will change
the probability structure. Therefore, education will not used in the subsequent modeling. We will glucose
is clinically associated with several variables such as diabetes, TenYearCHD, currentSmoker, etc. We will
use these auxiliary variables using regression methods.

11

https://www.bmj.com/content/BMJ/360/BMJ.j5855.Full.pdf


4.3.1 Mean/Mode/Random Replacement Methods

There is no base R function to find the mode of a data set. We first define an R function to find the mode of
a given data set.
# Create the function.
getmode <- function(v) {

uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]

}

The method of random replacement uses the (empirical) distribution of the complete data values to
simulate random values and replace the missing values with these generated random values. This type of
imputation is recommended for no other auxiliary variables in the data set.
## mode replacement
Framingham$cigsPerDay[is.na(Framingham$cigsPerDay)] = getmode(Framingham$cigsPerDay)
## Random replacement for BPMeds using binomial distribution with p = 0.03
Framingham$BPMeds[is.na(Framingham$BPMeds)] =rbinom(53,1,0.03) # Bernoulli trial
## Remove NA first then take a random sample to replace the missing values
Framingham$totChol[is.na(Framingham$totChol)] = sample(na.omit(Framingham$totChol),

50,
replace = FALSE)

Framingham$BMI[is.na(Framingham$BMI)] = sample(na.omit(Framingham$BMI),
19,
replace = FALSE)

Framingham$heartRate[is.na(Framingham$heartRate)] = sample(na.omit(Framingham$heartRate),
1,
replace = FALSE)

Framingham$SmokerClass = ifelse(Framingham$cigsPerDay==0, "0none",
ifelse(Framingham$cigsPerDay<= 10, "light",

ifelse(Framingham$cigsPerDay< 20, "moderate", "heavy")))

4.3.2 Regression Imputation

We now impute glucose using linear regression model. After trying several models including sets of variables
that all include the major clinical variables currentSmoker, TenYearCHD, and diabetes. The model
with three clinical variables yielded the best R2. We decide to use the following model to predict the missing
glucose.

glucose = α0 + α1currentSmoker + α2TenYearCHD + α3diabetes

Regression imputation is essentially a predictive modeling approach. The performance of this imputation
method is heavily dependent on the strength of association between the set of auxiliary variables in the
predictive model.
## linear regression imputation - glucose
## Split the data into two sets: subset with complete records for fitting
## regression model and a data frame to predict the missing values in glucose
na.ID = which(is.na(Framingham$glucose)==TRUE)
ImputRegDat = Framingham[-na.ID,]
predData = Framingham[na.ID, c("glucose", "currentSmoker", "TenYearCHD", "diabetes")]
imput.Model = lm(glucose ~ currentSmoker + TenYearCHD + diabetes, data = ImputRegDat)
pander(summary(imput.Model)$coef)
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.49 0.4449 178.7 0

currentSmoker -1.335 0.6061 -2.203 0.02768
TenYearCHD 4.468 0.8417 5.308 1.171e-07

diabetes 89.69 1.869 48 0

The resulting prediction model is given by

glucose = 79.49 − 1.335 × currentSmoker + 4.468 × TenYearCHD + 89.69 × diabetes

We next impute glucose using the above model in the following code.
imputNA = predict(imput.Model, newdata = predData) # predicted glucose
Framingham$glucose[is.na(Framingham$glucose)] = imputNA
## Recheck the imputed data set
ImputedFramingham = Framingham

# write to the file directory for subsequent analysis
write.csv(ImputedFramingham, "ImputedFramingham.csv")
# upload the data to the GitHub repository
ImputedFramingham = read.csv("https://pengdsci.github.io/STA551/w08/ImputedFramingham.csv")

We check the performance of the imputation by comparing the distributions of the variables before and after
the imputation.
plot(density(na.omit(ImputedFramingham$glucose)),

xlab="glucose level",
col="darkred",
lwd=2,
main="Glucose Distributions Before and After Imputation")

lines(density(na.omit(Framingham0$glucose)),
col = "steelblue",
lwd =2)

legend("topright", c("Imputed Glucose", "Original Glucose"),
col=c("darkred", "steelblue"),
lwd=rep(2,2),
bty="n")
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The above density curves indicate that the distributions of glucose levels before and after imputation are
close to each other. With the above EDA and imputation and discretization of the

5 Statistical Prediction
This section uses the classical approach to building logistic regression models and searching for the final
predictive model. The candidate models will be built based on the analytic data set ImputedFramingham.

The general model-building process involves the following three steps.

Step 1: build a small model that contains practically important variables regardless of their statistical
significance. This step requires inputs from domain experts to identify these variables. For convenience, we
this initial small model reduced model. These variables will be kept in the final model.

Step 2: add all variables that have potential statistical significance to the reduced model. This expanded
model is called full model. We would expect that the optimal model must be between the reduced model
and the full model.

Step 3: use an appropriate model performance measure to search for the best model between the reduced
model and the full model. In R MASS library,
# The following reduced model includes practically significant predictor variables
reducedModel = glm(TenYearCHD ~ prevalentStroke + BMI + BPMeds + totChol,

family = binomial(link = logit),
data = ImputedFramingham)

# Adding some potential statistically significant variables
fullModel = glm(TenYearCHD ~ prevalentStroke + BMI + BPMeds + totChol + age +

currentSmoker + SmokerClass + prevalentHyp + glucose + diaBP +
diabetes + male + sysBP + diaBP + heartRate,
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family = binomial(link = logit),
data = ImputedFramingham)

## Automatics variable selection procedure for searching for the best model
## for association analysis
forwards = step(reducedModel,

scope=list(lower=formula(reducedModel),upper=formula(fullModel)),
direction="forward",
trace = FALSE)

We next use ROC curves to choose the best predictive model. The R library pROC to extract information
about the ROC for each of the candidate models.
## predict the "success" probabilities of each model based on the entire data set
preReduced = predict(reducedModel, newdata = ImputedFramingham,type="response" )
predfullModel = predict(fullModel, newdata = ImputedFramingham,type="response" )
predforwards = predict(forwards, newdata = ImputedFramingham,type="response" )
##
prediction.reduced = preReduced
prediction.full = predfullModel
prediction.forwards = predforwards

category = ImputedFramingham$TenYearCHD == 1
ROCobj.reduced <- roc(category, prediction.reduced)
ROCobj.full <- roc(category, prediction.full)
ROCobj.forwards <- roc(category, prediction.forwards)

## AUC
reducedAUC = ROCobj.reduced$auc
fullAUC = ROCobj.full$auc
forwardsAUC = ROCobj.forwards$auc

## extract sensitivity and specificity from candidate models
sen.reduced = ROCobj.reduced$sensitivities
fnr.reduced = 1 - ROCobj.reduced$specificities
#
sen.full = ROCobj.full$sensitivities
fnr.full = 1 - ROCobj.full$specificities
#
sen.forwards = ROCobj.forwards$sensitivities
fnr.forwards = 1 - ROCobj.forwards$specificities

## Fond contrast color for ROC curves
colors = c("#8B4500", "#00008B", "#8B008B")

## Plotting ROC curves
#par(type="s")
plot(fnr.reduced, sen.reduced, type = "l", lwd = 2, col = colors[1],

xlim = c(0,1),
ylim = c(0,1),
xlab = "1 - specificity",
ylab = "sensitivity",
main = "ROC Curves of Candidate Models")

lines(fnr.full, sen.full, lwd = 2, lty = 2, col = colors[2])
lines(fnr.forwards, sen.forwards, lwd = 1, col = colors[3])
segments(0,0,1,1, lwd =1, col = "red", lty = 2)
legend("topleft", c("reduced", "full", "forwards", "random guess"),

col=c(colors, "red"), lwd=c(2,2,1,1),
lty=c(1,2,1,2), bty = "n", cex = 0.7)

## annotating AUC
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text(0.87, 0.25, paste("AUC.reduced = ", round(reducedAUC,4)), col=colors[1], cex = 0.7, adj = 1)
text(0.87, 0.20, paste("AUC.full = ", round(fullAUC,4)), col=colors[2], cex = 0.7, adj = 1)
text(0.87, 0.15, paste("AUC.forwards = ", round(forwardsAUC,4)), col=colors[3], cex = 0.7, adj = 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves of Candidate Models

1 − specificity

se
ns

iti
vi

ty

reduced
full
forwards
random guess

AUC.reduced =  0.6001
AUC.full =  0.7329

AUC.forwards =  0.7327

Figure 2: ROC curves comparing the model performance of the three candidate models.

The above ROCs show that the full and forwards models have similar predictive performance. Since
the forwards model has fewer variables, the forwards model should be selected as the final model for
implementation.

Remarks: The performance metrics used in constructing the ROC curves are based on prediction errors of
the model. ROC curves and AUC are performance metrics for predictive models. The model with the biggest
AUC may not be the best model for association analysis.

6 Rebranding Logistic Regression
Recall that the analytic expression of the logistic regression model has the following explicit expression.

Pr(Y = 1) = exp(w0 + w1x1 + · · · + wkxk)
1 + exp(w0 + w1x1 + · · · + wkxk) .

The diagrammatic representation of the above model is given by
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Figure 3: Figure 6. Diagram Representation of logistic regression models.

The above diagram of the logistic regression model is the basic single layer sigmoid neural network model -
perceptron.

6.1 Single Layer Neural Network - Perceptron
The perceptron is a supervised learning binary classification algorithm, originally developed by Frank
Rosenblatt in 1957. It is a type of artificial neural network. Its architecture is the same as the diagram of the
logistic regression model. The more general

Figure 4: Figure 7. Architecture of Single layer neural network models (perceptron).

Each input xi has an associated weight wi (like regression coefficient). The sum of all weighted inputs,∑n
i=1 wixi , is then passed through a nonlinear activation function f(), to transform the pre-activation level

of the neuron to output yj . For simplicity, the bias term is set to w0 which is equivalent to the intercept of a
regression model.
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To summarize, we explicitly list the major components of perceptron in the following.

• Input Layer: The input layer consists of one or more input neurons, which receive input signals from
the external world or other layers of the neural network.

• Weights: Each input neuron is associated with a weight, which represents the strength of the connection
between the input neuron and the output neuron.

• Bias: A bias term is added to the input layer to provide the perceptron with additional flexibility in
modeling complex patterns in the input data.

• Activation Function: The activation function determines the output of the perceptron based on
the weighted sum of the inputs and the bias term. Common activation functions used in perceptrons
include the step function, sigmoid function, and ReLU function, etc.

• Output: The output of the perceptron is a single binary value, either 0 or 1, which indicates the class
or category to which the input data belongs.

Note that when the sigmoid (i.e., logistic) function.

f(x) = exp(x)
1 + exp(x) = 1

1 + exp(−x) .

is used in the perceptron, the single-layer perception with logistic activation is equivalent to the binary logistic
regression.

Remarks:

1. The output of the above perceptron network is binary, i.e., Ŷ = 0 or 1 since an implicit decision
boundary based on the sign of the value of the transfer function

∑m
i=1 wixi + w0. In the sigmoid

perceptron network, this is equivalent to setting the threshold probability to 0.5. To see this, not that,
if

∑m
i=1 wixi + w0 = 0, then

P

[
Y = 1

∣∣∣∣∣
m∑

i=1
wixi + w0

]
= 1

1 + exp [−(
∑m

i=1 wixi + w0)]
= 1

1 + exp(0) = 1
2

2. If the cut-off probability 0.5 is used in the logistic predictive model, this logistic predictive model is
equivalent to the perceptron with sigmoid being the activation function.

3. There are several other commonly used activation functions in perceptron. The sigmoid activation
function is only one of them. This implies that the binary logistic regression model is a special perceptron
network model.

6.2 Commonly Used Activation Functions
The sigmoid function is only one of the activation functions used in neural networks. The table below lists
several other commonly used activation functions in neural network modeling.

6.3 Algorithms for Estimating Weights
We know that the estimation of the regression coefficient in logistic regression is to maximize the likelihood
function defined based on the binomial distribution. Algorithms such as Newton and its variants, scoring
methods, etc. are used to obtain the estimated regression coefficients.

In neural network models, the weights are estimated by minimizing the loss function (also called cost
function) when training neural networks. The loss function could be defined as mean square error (MSE)
for regression tasks.
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Figure 5: Figure 9. Popular activation functions in neural networks.
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Error(w0, w1, · · · , wk) = 1
n

n∑
i=1

[ŷi − (w0 + w1x1i + · · · + wkxki)]2

For the binary classification task, the loss function is defined to be cross-entropy (ce) with the following
explicit expression

Error(w0, w1, · · · , wk) = −
∑N

i=1[yi log(pi) + (1 − yi) log(1 − pi)]
N

.

where

pi = exp(w0 + w1x1i + · · · + wkxki)
1 + exp(w0 + w1x1i + · · · + wkxki)

.

Learning algorithms forward and backward propagation that depend on each other are used in minimizing
the underlying loss function.

• Forward propagation is where input data is fed through a network, in a forward direction, to generate
an output. The data is accepted by hidden layers and processed, as per the activation function, and
moves to the successive layer. During forward propagation, the activation function is applied, based on
the weighted sum, to make the neural network flow non-linearly using bias. Forward propagation is the
way data moves from left (input layer) to right (output layer) in the neural network.

• Backpropagation is used to improve the prediction accuracy of a node is expressed as a loss function
or error rate. Backpropagation calculates the slope of (gradient) a loss function of other weights in
the neural network and updates the weights using gradient descent through the learning rate.

Figure 6: Figure 10. Updating weights with backpropagation algorithm.

The general architecture of the backpropagation network model is depicted in the following diagram.

The algorithm of backpropagation is not used in classical statistics. This is why the neural network model
outperformed the classical logistic model in terms of predictive power.

The R library neuralnet has the following five algorithms:

backprop - traditional backpropagation.

rprop+ - resilient backpropagation with weight backtracking.

rprop- - resilient backpropagation without weight backtracking.

sag - modified globally convergent algorithm (gr-prop) with the smallest absolute gradient.
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Figure 7: Figure 11. The idea of backpropagation neural networks.

slr - modified globally convergent algorithm (gr-prop) with the smallest learning rate.

Although it is not required, scaling can improve the performance of neural network models. There are different
types of scaling and standardization. The following scaling is commonly used in practice.

scaled.var = orig.var − min(orig.var)
max(orig.var) − min(orig.var) .

6.4 Implementing NN with R
Several R libraries can run neural network models. nnet is the simplest one that only implements single-layer
networks. neuralnet can run both single-layer and multiple-layer neural networks. RSNNS (R Stuttgart
Neural Network Simulator) is a wrapper of multiple R libraries that implements different network models.

6.4.1 Syntax of neuralnet

We use neuralnet library to run the neural network model in the example (code for installing and loading
this library is placed in the setup code chunk).

The syntax of neuralnet() is given below

neuralnet(formula,
data,
hidden = 1,
threshold = 0.01,
stepmax = 1e+05,
rep = 1,
startweights = NULL,
learningrate.limit = NULL,
learningrate.factor =list(minus = 0.5, plus = 1.2),
learningrate=NULL,
lifesign = "none",
lifesign.step = 1000,
algorithm = "rprop+",
err.fct = "sse",
act.fct = "logistic",
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linear.output = TRUE,
exclude = NULL,
constant.weights = NULL,
likelihood = FALSE)

The detailed help document can be found at https://www.rdocumentation.org/packages/neuralnet/versions
/1.44.2/topics/neuralnet.

The function is fairly flexible and allows different loss functions, methods of estimation, and different types of
outputs. The authors also required scaled features and the explicit definition for dummy variables derived
from underlying categorical feature variables.

6.4.2 Feature Conversion and Model Formula

When using neuralnet(), we should keep the following in mind when preparing data for the algorithm.

• neuralnet() requires all features to be in the numeric form (dummy variable for categorical
features, normalization of numerical features).

• The model formula in neuralnet() requires dummy variables to be explicitly defined.

• It is also highly recommended to scale all numerical features before being included in the network
model.

• Extract all feature names (numeric and all dummy variables) and write them in the model formula like
the one in glm: response ~ var.1 + var.2 + ... +var.k,

7 A Case Study
For illustration, we will use the best model selected from the previous section to build a single-layer neural
network model (perceptron) using the Framingham CHD data. Since the original data set has been feature
engineered, we will illustrate the steps for preparing the data for the neuralnet() function based on the
engineered data set.

7.1 Subsetting and Scaling Data
We first subset the data with only variables used in the logistic regression model (the full model) and then
scale all numerical variables. The above suggested min-max scaling method will be used in this case study
(which is reflected in the following code).
fullModelNames=c("prevalentStroke", "BMI","BPMeds","totChol","age", "currentSmoker","SmokerClass","prevalentHyp","glucose","diaBP","diabetes", "male","sysBP","heartRate", "TenYearCHD")
neuralData = ImputedFramingham[, fullModelNames]
## feature scaling
neuralData$BMIscale = (neuralData$BMI-min(neuralData$BMI))/(max(neuralData$BMI) - min(neuralData$BMI))
neuralData$totCholscale = (neuralData$totChol-min(neuralData$totChol))/(max(neuralData$totChol) - min(neuralData$totChol))
neuralData$agescale = (neuralData$age-min(neuralData$age))/(max(neuralData$age) - min(neuralData$age))
neuralData$glucosescale = (neuralData$glucose-min(neuralData$glucose))/(max(neuralData$glucose) - min(neuralData$glucose))
neuralData$diaBPcale = (neuralData$diaBP-min(neuralData$diaBP))/(max(neuralData$diaBP) - min(neuralData$diaBP))
neuralData$sysBPscale = (neuralData$sysBP-min(neuralData$sysBP))/(max(neuralData$sysBP) - min(neuralData$sysBP))
neuralData$heartRatescale = (neuralData$heartRate-min(neuralData$heartRate))/(max(neuralData$heartRate) - min(neuralData$heartRate))
## drop original feature - keeping only features to be used in the neural network
ANNModelNames=c("prevalentStroke", "BPMeds", "currentSmoker","SmokerClass", "prevalentHyp", "diabetes","male","BMIscale","totCholscale","agescale","glucosescale", "diaBPcale","sysBPscale", "heartRatescale","TenYearCHD")
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## final data for the neuralnet() function
neuralDataFinal = neuralData[,ANNModelNames]

7.2 Creating Model Formula
Instead of writing the formula explicitly, we use the R function model.matrix to create the model formula
for neuralnet(). This method allows us to generalize the cases with many variables in which the explicit
expression is not practically feasible. For illustration, we will define the formula implicitly and explicitly.

7.2.1 Implicitly Definition

The following code explicitly defines the dummy variables to be used in the final model formula.

neuralModelFormula = model.matrix(~prevalentStroke+ BPMeds+ currentSmoker+SmokerClass+ prevalentHyp+ diabetes+male+ BMIscale+totCholscale+agescale+glucosescale+diaBPcale+sysBPscale + heartRatescale, data = neuralDataFinal)
# The following will list all numerical variables and automatically derived dummy variables
colnames(neuralModelFormula)
neuralModelDesignMatrix = model.matrix(~prevalentStroke+ BPMeds+ currentSmoker+SmokerClass+ prevalentHyp+ diabetes+male+ BMIscale+totCholscale+agescale+glucosescale+diaBPcale+sysBPscale + heartRatescale + TenYearCHD, data = neuralDataFinal)
# The following will list all numerical variables and automatically derived dummy variables
colnames(neuralModelDesignMatrix)

[1] "(Intercept)" "prevalentStroke" "BPMeds"
[4] "currentSmoker" "SmokerClassheavy" "SmokerClasslight"
[7] "SmokerClassmoderate" "prevalentHyp" "diabetes"

[10] "male" "BMIscale" "totCholscale"
[13] "agescale" "glucosescale" "diaBPcale"
[16] "sysBPscale" "heartRatescale" "TenYearCHD"

Dummy variables SmokerClasslight, SmokerClassmoderate, and SmokerClassnone dummy variables are
defined based on the categorical variable "SmokerClass. The object in the above code defines the design
matrix which will be used in the underlying model.

7.2.2 Implicit Definition

To use the implicit method, we need to create a data frame that contains the feature variables to be included
in the neural network model. Since the neuralData data set contains all feature variables and the response
variable, we need to drop the response variable and then use the short-cut implicit method.

implicitFormula = model.matrix( ~., data = neuralDataFinal)
colnames(implicitFormula)
implicitFormulaDesignMatrix = model.matrix( ~., data = neuralDataFinal)
colnames(implicitFormulaDesignMatrix)

[1] "(Intercept)" "prevalentStroke" "BPMeds"
[4] "currentSmoker" "SmokerClassheavy" "SmokerClasslight"
[7] "SmokerClassmoderate" "prevalentHyp" "diabetes"

[10] "male" "BMIscale" "totCholscale"
[13] "agescale" "glucosescale" "diaBPcale"
[16] "sysBPscale" "heartRatescale" "TenYearCHD"

The above code produces the same set of features including automatically defined dummy variables.

23



7.2.3 Ensemble Model Formula

After defining the design matrix with explicitly defined dummy variables based on the corresponding categorical
variables, we use the string function to define the model formula. Since both implicit and explicit methods
are equivalent, we use the list of variables to define the final model formula.

Note that the first column of the model matrix corresponds to the intercept (bias in neural network algorithm)
and the last column is the response variable. We eventually want to create a model formula in the form
similar to response ~ var.1 + var.2 + ... + var.m.

paste() is a powerful string function. We will use it to define the model formula using the following code.

columnNames = colnames(implicitFormulaDesignMatrix)
columnList = paste(columnNames[-c(1,length(columnNames))], collapse = "+")
columnList = paste(c(columnNames[length(columnNames)],"~",columnList), collapse="")
modelFormula = formula(columnList)
modelFormula
columnNames = colnames(implicitFormulaDesignMatrix)
columnList = paste(columnNames[-c(1,length(columnNames))], collapse = "+")
columnList = paste(c(columnNames[length(columnNames)],"~",columnList), collapse="")
modelFormula = formula(columnList)
modelFormula

TenYearCHD ~ prevalentStroke + BPMeds + currentSmoker + SmokerClassheavy +
SmokerClasslight + SmokerClassmoderate + prevalentHyp + diabetes +
male + BMIscale + totCholscale + agescale + glucosescale +
diaBPcale + sysBPscale + heartRatescale

The above formula will used in neuralnet().

7.2.4 Building Perceptron Model

The neuralnet() function provides many arguments (also called **hyperparameters). In this class, we will
not focus on tuning these hyperparameters to find a model with an optimal performance. The objective is
to gain a basic knowledge of the architecture of neural network models. We will use the default arguments
provided in the function.

Recall that the perceptron model be used for both regression and classification. The argument linear.output
needs to be specified correctly to perform the appropriate modeling.

• When performing regression modeling with continuous response, the argument linear.output should
be set to TRUE.

• When performing classification modeling with a categorical response, the argument linear.output
should be set to FALSE.

NetworkModel = neuralnet(modelFormula,
data = implicitFormulaDesignMatrix, # must be the design matrix
hidden = 1,
act.fct = "logistic", # sigmoid activation function
linear.output = FALSE
)

kable(NetworkModel$result.matrix)

error 243.6384702
reached.threshold 0.0099928
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steps 33726.0000000
Intercept.to.1layhid1 2.0380319
prevalentStroke.to.1layhid1 -0.3568067
BPMeds.to.1layhid1 -0.0344436
currentSmoker.to.1layhid1 0.5816637
SmokerClassheavy.to.1layhid1 -0.7937997
SmokerClasslight.to.1layhid1 -0.5116792
SmokerClassmoderate.to.1layhid1 -0.7875561
prevalentHyp.to.1layhid1 -0.1178189
diabetes.to.1layhid1 0.0501289
male.to.1layhid1 -0.2414363
BMIscale.to.1layhid1 0.0073128
totCholscale.to.1layhid1 -0.4415697
agescale.to.1layhid1 -0.9012127
glucosescale.to.1layhid1 -1.3871392
diaBPcale.to.1layhid1 0.2425182
sysBPscale.to.1layhid1 -1.3929001
heartRatescale.to.1layhid1 0.0918385
Intercept.to.TenYearCHD 5.8764131
1layhid1.to.TenYearCHD -10.8930027

The above table lists the estimated weights in the perceptron model. Next, we create a visual representation
of the perceptron model. Instead of using the default plot.nn(), we use a wrapper of a plot function to
create the following nice-looking figure (see the link to the source code).
plot(NetworkModel, rep="best")

7.3 Prediction and ROC Analysis
The neuralnet library has the generic R function predict() to make a prediction using the perceptron
model object and a set of new data (in an R data frame). Depending on how ROC curves are used, they
could be constructed on either training, testing, or the entire data. To keep consistency, we will construct the
ROC of the perceptron model using the entire data set so we can fairly compare the ROC curves and the
corresponding AUCs among the three logistic prediction models and the perceptron model.
predNN = predict(NetworkModel, newdata = implicitFormulaDesignMatrix, linear.output = FALSE)
preReduced = predict(reducedModel, newdata = ImputedFramingham,type="response" )
predfullModel = predict(fullModel, newdata = ImputedFramingham,type="response" )
predforwards = predict(forwards, newdata = ImputedFramingham,type="response" )
##
##
prediction.reduced = preReduced
prediction.full = predfullModel
prediction.forwards = predforwards

category = ImputedFramingham$TenYearCHD == 1
ROCobj.reduced <- roc(category, prediction.reduced)
ROCobj.full <- roc(category, prediction.full)
ROCobj.forwards <- roc(category, prediction.forwards)
ROCobj.NN <-roc(category, predNN)

## AUC
reducedAUC = ROCobj.reduced$auc
fullAUC = ROCobj.full$auc
forwardsAUC = ROCobj.forwards$auc
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Figure 8: Figure 12. Single-layer backpropagation Neural network model for Pima Indian diabetes
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NNAUC = ROCobj.NN$auc
## extract sensitivity and specificity from candidate models

sen.reduced = ROCobj.reduced$sensitivities
fnr.reduced = 1 - ROCobj.reduced$specificities
#
sen.full = ROCobj.full$sensitivities
fnr.full = 1 - ROCobj.full$specificities
#
sen.forwards = ROCobj.forwards$sensitivities
fnr.forwards = 1 - ROCobj.forwards$specificities
#
sen.NN = ROCobj.NN$sensitivities
fnr.NN = 1 - ROCobj.NN$specificities

## Fond contrast color for ROC curves
colors = c("#8B4500", "#00008B", "#8B008B", "#055d03")

## Plotting ROC curves
#par(type="s")
plot(fnr.reduced, sen.reduced, type = "l", lwd = 2, col = colors[1],

xlim = c(0,1),
ylim = c(0,1),
xlab = "1 - specificity",
ylab = "sensitivity",
main = "ROC Curves of Candidate Models")

lines(fnr.full, sen.full, lwd = 2, lty = 2, col = colors[2])
lines(fnr.forwards, sen.forwards, lwd = 1, col = colors[3])
lines(fnr.NN, sen.NN, lwd = 1, col = colors[4])

segments(0,0,1,1, lwd =1, col = "red", lty = 2)
legend("topleft", c("reduced", "full", "forwards", "NN", "random guess"),

col=c(colors, "red"), lwd=c(2,2,1,1,1),
lty=c(1,2,1,1,2), bty = "n", cex = 0.7)

## annotating AUC
text(0.87, 0.25, paste("AUC.reduced = ", round(reducedAUC,4)), col=colors[1], cex = 0.7, adj = 1)
text(0.87, 0.20, paste("AUC.full = ", round(fullAUC,4)), col=colors[2], cex = 0.7, adj = 1)
text(0.87, 0.15, paste("AUC.forwards = ", round(forwardsAUC,4)), col=colors[3], cex = 0.7, adj = 1)
text(0.87, 0.10, paste("AUC.NN = ", round(NNAUC,4)), col=colors[4], cex = 0.7, adj = 1)

As anticipated, the overall performance of the perceptron model and the full and reduced models are similar
to each other because we used the sigmoid activation function in the perceptron model.

7.4 Cross-validation in Neural Network
The algorithm of Cross-validation is primarily used for tuning hyper-parameters. For example, in the sigmoid
perceptron, the optimal cut-off scores for the binary decision can be obtained through cross-validation. One
of the important hyperparameters in the neural network model is the learning rate α (in the backpropagation
algorithm) that impacts the learning speed in training neural network models.

8 About Deep Learning
From Wikipedia, the free encyclopedia

Deep learning is part of a broader family of machine learning methods, which is based on artificial neural
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Figure 9: ROC curves comparing the model performance of the three logistic models and a single-layer neural
network.
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networks with representation learning. The adjective “deep” in deep learning refers to the use of multiple
layers in the network. Methods used can be either supervised, semi-supervised, or unsupervised.

Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning,
recurrent neural networks, convolutional neural networks, and transformers have been applied to fields including
computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug
design, medical image analysis, climate science, material inspection and board game programs, where they
have produced results comparable to and in some cases surpassing human expert performance.

8.1 Multi-layer Perceptron
A Multi-Layer Perceptron (MLP) contains one or more hidden layers (apart from one input and one output
layer). While a single-layer perceptron can only learn linear functions, a multi-layer perceptron can also learn
non-linear functions. The following is an illustrative MLP.

Figure 10: Figure 8. Multi-layer perceptron.

The major components in the above MLP are described in the following.

Input Layer: The Input layer has three nodes. The Bias node has a value of 1. The other two nodes take X1
and X2 as external inputs (which are numerical values depending upon the input data set). No computation
is performed in the Input layer, so the outputs from nodes in the Input layer are 1, X1, and X2 respectively,
which are fed into the Hidden Layer.

Hidden Layer: The Hidden layer also has three nodes with the Bias node having an output of 1. The
output of the other two nodes in the Hidden layer depends on the outputs from the Input layer (1, X1, X2)
as well as the weights associated with the connections (edges). Figure 16 shows the output calculations for
the hidden nodes. Remember that f() refers to the activation function. These outputs are then fed to the
nodes in the Output layer.

Output Layer: The Output layer has two nodes that take inputs from the Hidden layer and perform
similar computations as shown in the above figure. The values calculated (Y1 and Y2) as a result of these
computations act as outputs of the Multi-Layer Perceptron.
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