
Cross Validation and Concepts of ROC Analysis

Cheng Peng

STA 511 - Foudations of Data Science

Contents
1 Introduction 1

2 Review of Linear and Logistic Models 2
2.1 Linear Regression Model . 2
2.2 Logistic Regression Model . 3
2.3 Predictive Performance Measures . 4

2.3.1 Linear Regression . 4
2.3.2 Logistic Regression . 4
2.3.3 ROC Curve . 5

2.4 Example of Fraud Detection . 6

3 Data Splitting Types 8
3.1 Two-way Splitting . 8
3.2 Three-way Splitting . 9
3.3 Overfitting and Underfitting . 10
3.4 Splitting Methods . 11

4 Cross-Validation 11
4.1 K-Fold Cross-Validation . 11
4.2 5-Fold Cross-Validation . 12

4.2.1 Cross-validation with Linear Regression . 13
4.2.2 Cross-validation in Logistic Regression . 17

4.3 Additional Comments of K-Fold CV . 20
4.4 Other Cross-Validation Methods . 20

5 Optimal Cut-off Probability. 21

1 Introduction
In the previous module, we introduced two types of regression models in statistics that are formulated based
on several assumptions such as iid (identically independent distribution), normal distribution or binomial
distribution of the response variable, the large sample size for using the central limit theorem to define
different performance metrics, etc. With these assumptions, we can define different methods to assess the
performance of models and identify the best models for implementation.

In data science projects, it is quite often that data generation processes do not meet the requirements for
many classical models and procedures. We need to use appropriate performance metrics to assess

1

the goodness of the model/algorithm without having strict assumptions and make sure the model will be
consistently reliable across new, unseen data sets.

The majority of performance metrics in data science are defined directly based on either the estimated error
of the response or some type of ‘distance’. In predictive modeling, most of the performance measures are
defined with predictive error probabilities. We will introduce one of the most commonly used global predictive
performance measures - the ROC (receiver operating characteristics) curve and its components.

In this module, we will discuss the basics of K-Fold Cross-Validation and compare it to some simpler
methods. Some commonly used performance measures for predictive modeling such as sensitivity, specificity,
false positive rate, false negative rate, ROC curve, and the area of the ROC curve (AUC) will also be
introduced and illustrated with some simple examples.

2 Review of Linear and Logistic Models
In classical statistical modeling, we select candidate models based on exploratory data analysis and visual
analysis. The candidate models are then fit to the analytic data set. Since all models have some sort of
assumptions (think about linear regression and logistic and Poisson regression models), and then carry out
model diagnostic analyses to identify potential violations of the model assumption. Of course, we assume
that the data represent the population. This modeling process is depicted in the following diagram.

Figure 1: Classical statistical modeling process.

Recall the process of the following two representative statistical models.

2.1 Linear Regression Model
First, we look at the process of how to build a linear regression model for a data set.

• Explicit and Implicit Assumptions. The following are some of the assumptions about a normal-based
linear regression model:

– Predictor (feature) variables are (linearly or curve-linearly) correlated to the response variable
(also called label in machine learning terms);

– Predictor variables themselves are NOT highly linearly correlated (i.e., no serious collinearity);
– The response variable is normally distributed;
– The variance of the response variable is constant;
– There are no outlier (influential) observations;
– information on all relevant predictor variables is available in the data (i.e., no important predictor

is missing);

2

• Model Fitting (Parameter Estimating). The least-square estimator (LSE), which is equivalent
to the maximum likelihood estimator (MLE) when the response variable is assumed to be a normal
distribution, can be used to estimate the regression coefficients.

• Model Selection and Diagnostics. Since several implicit and explicit assumptions have been assumed
underlying the linear regression, different sets of diagnostic measures were developed to detect different
potential violations of the model.

– global goodness-of-fit: R2, AIC and SBC (requires normality assumption of the response variable),
MSE, etc.

– local goodness-of-fit/model selection: R, F-test (need normality and equal variance of the response
variable), t-test, likelihood ratio test, Mallow’s Cp, etc.

– normality: QQ-plot and probability plot for a visual check, goodness-of-fit tests such as Anderson-
Darling, Cramer-von Miss, Kolmogorov-Smirnov, Shapiro-Wilks, and Pearson’s chi-square tests,
etc.

– detecting outliers/influential observations: leverage point-hat matrix, DFITT - defined based on
leave-one-out resampling method, cook’s distance, (scaled) residual plots, etc.

– verifying constant variance: F-test (requires normality), Brown-Forsythe test (nonparametric),
Breusch-Pagan Test (also nonparametric), Bartlett’s Test (requires normality), etc.

– detecting collinearity: Variance inflation factor (VIF) for data-based and structural collinearity.
– detecting mission of determinant variable:

2.2 Logistic Regression Model
For the binary logistic model, we also follow the same steps to identify the final model. For example, the
well-known binary logistic regression modeling follows similar steps:

• Assumptions: Unlike the linear regression model which has a strong assumption of normality, the
logistic regression model assumes the following

– binomial distribution: The dependent variable is binary.
– independence: The logistic regression requires the observations to be independent of each other.
– collinearity: The logistic regression requires there to be little or no multicollinearity among the

independent variables.
– linearity: The logistic regression assumes linearity of independent variables and the log odds of

the event of interest.
– large sample size: The logistic regression typically requires a large sample size. A general guideline

is that you need a minimum of 10 observations with the least frequent outcome for each independent
variable in your model.

– mis-specification: No important variables are omitted. No extraneous variables are included.
– measurement error : The independent variables are measured without error.

• Model Fitting: The coefficients of the logistic regression model are estimated using a maximum
likelihood estimator. Note LSE cannot be estimated for the logistic regression model.

• Model Selection and Diagnostics: Unlike the normal linear regression model, there are a few
diagnostic methods one can use in logistic regression models.

– misspecification: link test (large sample test);
– goodness-of-fit: log-likelihood chi-square and pseudo-R-square; Hosmer-Lemeshow’s lack of fit test

AIC and SBC.
– multi-collinearity: VIF
– influential points: Cook’s distance, DBETA, deviance residuals

3

2.3 Predictive Performance Measures
Regression models can be used for either predictive or association analysis. Different performance metrics have
been defined to assess the predictive power of regression models. We list some of the error-based measures in
the following.

2.3.1 Linear Regression

When evaluating the predictive performance of linear regression models, several key metrics based on
predictive error (residuals) are commonly used. Let {ŷ1, ŷ2, · · · , ŷk} be the corresponding predicted values
of {y1, y2, · · · , yk}.

Mean Absolute Error (MAE) is defined by

MAE =
∑k

i=1 |ŷi − yi|
k

This measures the average magnitude of the errors in predictions, without considering their direction. It is
the average of the absolute differences between predicted and actual values. MAE is less sensitive to outliers
compared to other metrics.

Mean Squared Error (MSE) is defined by

MSE =
∑k

i=1(ŷi − yi)2

k

This measures the average of the squares of the errors. It gives a higher weight to larger errors, making it
useful for identifying models that have large prediction errors.

Root Mean Squared Error (RMSE) is defined by

RMSE =

√∑k
i=1(ŷi − yi)2

k

This is the square root of the MSE. It provides an error value in the same units as the dependent variable,
making it easier to interpret.

2.3.2 Logistic Regression

Recall that the logistic regression model.

P (Y = success) = exp(β0 + β1x1 + · · · + βkxk)
1 + exp(β0 + β1x1 + · · · + βkxk) .

The model predicts the probability of success but not the value of Y (“success” or “failure”). In order
to predict “success” or “failure”, we need to have a cut-off probability. The key predictive performance
metrics are defined based on the predicted values of Y (“success” or “failure”) and the true values of Y
which is tabulated in the following confusion matrix

Several key metrics that are commonly used are based on the above confusion matrix.

True Positive Rate (TPR): The proportion of correctly predicted positive among all true POSI-
TIVES. True Positive Rate is also called the sensitivity of the model which is a conditional probability
P (predicted true|actual true). The sample TPR is given by

4

Figure 2: Confusion matrix of binary logistic predictive models

True Positive Rate = TP

TP + FN

False Positive Rate (FPR): The proportion of incorrectly predicted positive among all true NEGA-
TIVES. is a conditional probability P (predicted true|actual negative). The sample TPR is given by

False Positive Rate = FP

FP + TN

True Negative Rate (also called Specificity) is the probability that an actual negative will test negative.
That is, P (Predicted Negative|Actual Negative). The sample true negative rate (specificity) is given by

True Ngative Rate = TN

TN + FP
.

Apparently, false positove rate = 1 − specificity.

Accuracy: The proportion of correctly predicted instances out of the total instances.

accuracy = TP + TN

TP + TN + FP + FN

Precision and Recall: Precision measures the proportion of true positive predictions among all positive
predictions, while recall (or sensitivity) measures the proportion of true positives identified out of all actual
positives.

precision = TP

TP + FP
and recall = TP + TN

TP + FN

F1 Score: The harmonic mean of precision and recall, providing a balance between the two.

F1 Score = 2 × precision × recall
precision + recall

2.3.3 ROC Curve

The above performance metrics are defined based on the confusion matrix. However, a confusion matrix is
defined based on the choice of the cut-off predictive scores. In logistic predictive modeling, the predictive
scores are the probabilities of observing the target category label (either success or failure if the binary
response with these two character values) in the training model.

Since the success probability is between 0 and 1, we can try different cut-off probabilities to construct
different confusion matrices and calculate the corresponding sensitivity and specificity measures. We can

5

use these pairs of sensitivity and specificity at different cut-off probabilities. The plot of sensitivity against
(1-specificity) is called Receiver Operating Characteristic (ROC) curve.

For example, if we have a predictive model such as logistic regression to predict whether an animal is a dog or
cat based on a data set with some given features related to cats and animals. The following animated graph
shows that the coordinates of each point on the ROC curve are determined by a confusion matrix (formed by
a cut-off probability).

https://pengdsci.github.io/STA551/w07/img/roc.gif

The next animated graph shows the prediction error-based performance at each given cut-off probability.

https://github.com/pengdsci/STA551/blob/main/w06/img/w06-Animated-ROC.gif

When comparing two more classification models, ROC curves provide an intuitive visual comparison of the
global performance of the underlying models. However, if two ROC curves of two underlying classification
models intersect, sometimes it is difficult to compare the global performance of the two underlying models
through visual representations. The following figure shows the ROC curves of two hypothetical classification
models. It is hard to check the performance of the two models.

Figure 3: Using ROC for model selection.

In the above case, we can use the areas under the ROC curves to compare the global performance of the
two underlying models. The Area Under the Curve (AUC) provides a numerical measure of the overall
performance of a classification model. In the next example, we will use an example to demonstrate how to
construct an ROC curve of a logistic predictive model and its AUC using an R function.

2.4 Example of Fraud Detection
This data set was extracted from a real-world data set. The data set contains a fraud index (calculated
from real fraud data) and fraud status (in the character format). We will use a data set to build a logistic
regression and construct an ROC curve.
fraud.data = read.csv("https://pengdsci.github.io/datasets/FraudIndex/fraudidx.csv")[,-1]
encode status variable: bad = 1 and good = 0
good.id = which(fraud.data$status == "good ")
bad.id = which(fraud.data$status == "fraud")

6

https://pengdsci.github.io/STA551/w07/img/roc.gif
https://github.com/pengdsci/STA551/blob/main/w06/img/w06-Animated-ROC.gif

##
fraud.data$fraud.status = 0
fraud.data$fraud.status[bad.id] = 1
cut.off.seq = seq(0, 1, length = 100)
sensitivity.vec = NULL
specificity.vec = NULL
###
logit.model = glm(fraud.status ~ index, family = binomial(link = logit), data = fraud.data)
newdata = data.frame(index= fraud.data$index)
pred.prob.train = predict.glm(logit.model, newdata, type = "response")
for (i in 1:100){

fraud.data$train.status = as.numeric(pred.prob.train > cut.off.seq[i])
components for defining various measures
TN = sum(fraud.data$train.status == 0 & fraud.data$fraud.status == 0) # true negative
FN = sum(fraud.data$train.status == 0 & fraud.data$fraud.status == 1) # false negative
FP = sum(fraud.data$train.status == 1 & fraud.data$fraud.status == 0) # false positive
TP = sum(fraud.data$train.status == 1 & fraud.data$fraud.status == 1) # true positive
###
sensitivity.vec[i] = TP / (TP + FN)
specificity.vec[i] = TN / (TN + FP)
}
one.minus.spec = 1 - specificity.vec
sens.vec = sensitivity.vec
we next use library {pROC}
to calculate AUC

prediction = pred.prob.train
category = fraud.data$fraud.status == 1
ROCobj <- roc(category, prediction)
AUC = round(auc(ROCobj),4)

####
par(pty = "s") # make a square figure
plot(one.minus.spec, sens.vec, type = "l", xlim = c(0,1), ylim = c(0,1),

xlab ="1 - specificity",
ylab = "sensitivity",
main = "ROC curve of Logistic Fraud Model",
lwd = 2,
col = "blue",)

segments(0,0,1,1, col = "red", lty = 2, lwd = 2)
#AUC = round(sum(sens.vec*(one.minus.spec[-101]-one.minus.spec[-1])),4)
text(0.8, 0.3, paste("AUC = ", AUC), col = "blue", cex = 0.8)

ROC curves and AUCs are used to compare the performance of two predictive models. The bigger the AUC,
the better the predictive model. If a single predictive model is used, the AUC measures the predictive power
of the model. In general, an AUC of 0.5 suggests no discrimination (i.e., ability to diagnose patients with
and without the disease or condition based on the test), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is
considered excellent, and more than 0.9 is considered outstanding.

The AUC of the above logistic predictive model is bigger than 0.9 which indicates the model has an outstanding
predictive power.

7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve of Logistic Fraud Model

1 − specificity

se
ns

iti
vi

ty

AUC = 0.9273

Figure 4: ROC Curve of logistic fraud model

3 Data Splitting Types
One of the fundamental differences between statistical and machine learning modeling is that both fields use
different model-building strategies. In classical statistical modeling, modeling building and evaluation are
based on the same data set. However, in data science, the data set is partitioned into disjoint subsets for
modeling training (building), validation, and testing, respectively. With data splitting, the model-building
process will relax the assumptions used in the classical statistical analysis.

This section outlines data splitting types that are commonly used in practice.

3.1 Two-way Splitting
Train-Test Split: The data set is divided into two sets: a training set and a testing set. Typically, 70-80%
of the data is used for training, and 20-30% is used for testing.

Figure 5: Training-testing split: two-split

Training Data

8

The training data set is the sample of data used to fit the model. In other words, the training data teaches the
model how it’s supposed to learn and think. To do this, training data is often presented in pairs: predictor
variables (feature variables) and a response variable (also called a label).

Training data is the first set of data the model/algorithm is exposed to. During each stage of training, the
model will be fit to the training data and estimate the parameters (also called weight in some machine
learning algorithms such as neural networks).

Because the training data set is used to estimate the parameters (i.e., teaching the algorithm), it requires a
certain amount of information to make the algorithms and models reliable. It makes up between 60% and
80% of the total data.

Test Data

The test data set is a sample of data used to provide an unbiased evaluation of a final model fit on the
training data set or to test the model. Put more simply, test data is a set of unlabeled inputs (i.e., the
response value is removed from the data) that test whether the model is producing the correct outputs in the
real world.

The key difference between a validation data set and a test data set is that the validation data set is used
during model configuration, while the test data set is reserved to evaluate the final model.

Test data is about 20% of the total data and should be completely separate from the training data — which
our model should know very well by this point.

Example

In classical statistics, we build and identify the final model using the entire data set and report the performance
of the final using the same entire data set because we made strong assumptions about models. For example,
in the linear regression, we use the training data set to estimate the coefficients of linear regression model
y = β0 + β1x1 + β2x2 + · · · + βkxk and obtain the following fitted model

y = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂kxk

We use the above-estimated model and the x-values in the testing data set to predict the corresponding
y-value. Then we can estimate the true bias.

3.2 Three-way Splitting
Train-Validation-Test Split: The data set is split into three subsets: training, validation, and testing. The
training set is used to train the model, the validation set is used to tune hyper-parameters and validate
performance during training, and the testing set is used for final evaluation.

Figure 6: Training-validating-testing split: three-way split

Validation Data

The validation data set is a sample of data held back from training the model. This data set provides an
unbiased evaluation of a model fit on the training data set while tuning model hyperparameters or calculating

9

a performance measure for model selection. In more basic terms, validation data is an unused portion of your
training data and helps determine if the initial model is accurate.

Figure 7: Illustrative example of three-way data split

A model hyperparameter is a configuration that is external to the model and whose value cannot be
estimated from data.

• They are often used in processes to help estimate model parameters.
• They are often specified by the practitioner.
• They can often be set using heuristics.
• They are often tuned for a given predictive modeling problem.

We don’t know the best value for a model hyperparameter on a given problem. We may use rules of thumb,
copy values used on other problems, or search for the best value by trial and error. For example, in predicting
labels in the logistic regression models, we need to use an optimal cut-off probability to achieve the best
accuracy. The cut-off probability is the hyper-parameter.

3.3 Overfitting and Underfitting
Overfitting and underfitting are common issues in data science (including statistics) that affect a model’s
performance.
include_graphics("img/OverfittingUnderfitting.png")

Overfitting occurs when a model learns the training data too well (high accuracy), including its noise
and outliers. This makes the model perform exceptionally well on training data but poorly on new, unseen
data (poor accuracy). Different reasons may cause overfitting. For example, model complexity such as too
many features and insufficient training data. In practice, we can use the cross-validation method to detect
overfitting and fix the issues by simplifying the models and increasing the volume of the training data set.

Underfitting happens when a model is too simple to capture the underlying patterns in the data. It performs
poorly on both training and new data. An underfitting model results in low accuracy on both training and
validation/test data. Underfitting can also be detected by cross-validation. The remedies for improving the
underfitting issue are to increase modeling complexity by adding more features and reducing regularization
(restriction).

10

Figure 8: Illustration of overfitting and underfitting

3.4 Splitting Methods
There are various methods of splitting data sets. The right approach for data splitting and the optimal split
ratio both depend on several factors, including the use case, amount of data, quality of data, and the number
of hyper-parameters.

The most common approach for dividing a data set is random sampling. As the name suggests, the method
involves shuffling the data set and randomly assigning samples to training, validation, or test sets according
to predetermined ratios. With class-balanced data sets, random sampling ensures the split is unbiased.

However, random sampling is not the correct approach with imbalanced data sets (the imbalanced class
ratio is usually less than 1%). When the data consists of skewed class proportions, random sampling will
almost certainly create a bias in the model. In this case, we need to use stratified sampling in which
the random sampling method is utilized in the major and minor categories respectively according to the
predetermined ratios. The final training, validating, and testing data sets are formed using the corresponding
stratified samples.

Caution: Prediction/classification problems based on imbalanced data are challenging in practice. Some
special methods in either sampling or modeling are needed to handle the imbalanced category issue. In this
course, we only focus on balanced data.

4 Cross-Validation
Different cross-validation methods are running in practice. We will discuss the K-fold CV in detail and work
on an example to illustrate the steps for implementing the procedure. Other cross-validation methods will
also be listed for reference at the end of this section.

4.1 K-Fold Cross-Validation
K-fold Cross Validation: The data set is divided into (k) equally sized folds. The model is trained and
evaluated (k) times, each time using (k − 1) folds for training and 1 fold for validation/testing. This helps in
obtaining more robust performance estimates. This note will focus on K-fold cross-validation and its
applications.

K-Fold Cross-Validation partitions the data set into multiple subsets to iteratively train and test the
model, the Train-Test Split method divides the data set into just two parts: one for training and the other
for testing. The Train-Test Split method is simple and quick to implement. It provides a more robust and
reliable performance estimate because it reduces the impact of data variability. By using multiple training
and testing cycles, it minimizes the risk of overfitting to a particular data split. This method also ensures that

11

Figure 9: K-fold cross validation split

every data point is used for both training and validation, which results in a more comprehensive evaluation
of the model’s performance.

The fold number K is considered as a hyper-parameter which can be tuned using validation data. In practice,
it is rarely tuned to save computational resources. The common practice is to choose a number between 5
and 10. In the next subsection, we use 5-fold cross-validation for model selection in linear regression using
performance measure MSE.

4.2 5-Fold Cross-Validation
The general 5-fold scheme is depicted in the following.
include_graphics("img/FiveFoldCV.png")

Figure 10: Five-fold Cross-validation scheme

Next, we use an example to illustrate the steps for 5-fold cross-validation.

Example: Palmer Penguins Dataset contains 344 penguins from 3 different species collected from 3
islands in the Palmer Archipelago, Antarctica. In this example, we only use four numerical variables: Culmen
Depth (mm), Culmen (mm), flipper length (mm), and body mass (g), to implement cross-validation for model
selection in linear regression.
include_graphics("img/penguinSize.png")

12

Figure 11: Illustration of penguin size measures

We will build two linear regression models and then use a 5-fold cross-validation method to select the one
with better performance (smaller MSE). The two models are defined in the following.

M1: BodyMass = β0 + β1CulmenLength + β2CulmenDepth + ϵ

and

M2: BodyMass = α0 + α1CulmenLength + α2CulmenDepth + α3FlipperLenth + ψ,

where ϵ ∼ N(0, σ2) and ψ ∼ N(0, δ2).

We use 80%-20% splitting ratio to randomly split into training and test data sets. We 5-fold splitting scheme
in the training data. We build the above two models with 4 combined training folds and calculate the
MSE based on the validation fold. Under this 5-fold cross-validation, each of the two models will have 5
performance measures (MSE), we calculate the mean of MSE of the two models respectively and the model
with the smaller mean MSE is the one to be the final model to report (implement). The following figure
depicts this process.
include_graphics("img/5foldCV.png")

4.2.1 Cross-validation with Linear Regression

We implement cross-validation using the penguin data to assess the performance of linear regression models.
penguin = read.csv("PenguinsSize.csv", header = TRUE)
pairs(penguin[, 3:6])

13

Figure 12: The process 5-fold cross-validation for model selection with MSE

The basic steps are outlined in the following:

• Two-way data splitting split the entire sample into training data (80%) and testing data (20%).

• Creating 5-fold data: randomly split the training data into 5 folds (with approximately equal size).

• Performing cross-validation: fit the two models to the 5 different combinations of combined training
folds and evaluate the performance based on the corresponding validation folds.

• Averaging MSE: take the average of the MSE of the two models respectively and report them for
model selection.

The R code for implementing the above 5-fold cross-validation is given by
penguin = na.omit(penguin) # delete all records with missing values
##
n = dim(penguin)[1] # sample size
obs.ID = 1:n # randomize obs ID
n.train = round(0.8*n) # training data size

shuffled.id = sample(obs.ID,
n,
replace = FALSE) # randomizing the observation IDs

shuffled.penguin = na.omit(penguin[shuffled.id,]) # randomizing the data set
Two-way split for training and testing data sets
train.data = shuffled.penguin[1:n.train,] # training data
test.data = shuffled.penguin[(n.train + 1):n,] # testing data
##
n.fold = round(n.train/5)-1 # size of 5-fold splitting, -1 to guarantee that

5*foldsize <= train.data size
5-fold cross-validation: iterative process with a for-loop
##
MSE.M1 = rep(0,5)

14

culmenLength

14
18

35 45 55

30
00

50
00

14 16 18 20

culmenDepth

flipperLength

170 190 210 230

3000 4500 6000

35
45

55
17

0
20

0
23

0
bodyMass

Figure 13: Pairwise scatter plot showing the correlations among the linear correlation between variables.

15

MSE.M2 = rep(0,5)
##
for (i in 1:5){

valid.id = ((i-1)*n.fold+1):(i*n.fold) # obs ID for validating fold
cross.train = train.data[-valid.id,]
cross.valid = train.data[valid.id,]
Building the two models
M1 = lm(bodyMass ~ culmenLength + culmenDepth, data = cross.train)
M2 = lm(bodyMass ~ culmenLength + culmenDepth + flipperLength, data = cross.train)
Predicting bodyMass with validate fold
predM1 = predict(M1, newdata = cross.valid)
predM2 = predict(M2, newdata = cross.valid)
##
MSE.M1[i] = mean((predM1 - cross.valid$bodyMass)ˆ2)
MSE.M2[i] = mean((predM2 - cross.valid$bodyMass)ˆ2)

}
MSE.1 = mean(MSE.M1)
MSE.2 = mean(MSE.M2)
Visualize the MSE
plot(1:5, MSE.M1, type = "l",

xlim =c(0,6),
ylim = c(100000, 50000+max(MSE.M1)),
ylab = "MSE (g)",
xlab = "Iterations 1 to 5",
lwd = 2,
col = "navy",
main = "Performance Evaluation via 5-fold Cross Validation",
cex.main = 0.8)

points(1:5, MSE.M1, pch = 19, col = "navy")
lines(1:5, MSE.M2, lwd = 2, col = "darkred")
points(1:5, MSE.M2, pch = 19, col = "darkred")
legend("topright", c(paste("M1 Avg. MSE: ", round(MSE.1)), paste("M2 Avg. MSE: ",round(MSE.2))),

col=c("navy", "darkred"),
pch = rep(19,2),
lwd = rep(2,2),
cex = 0.6,
bty = "n")

The above figure indicates that model 2 (M2) has a smaller average fold-wise MSE. This means that model
M2 has a better predictive performance. Therefore, M2 is recommended for practical prediction.

In real-world applications, the actual performance of the recommended model should also be reported to the
clients based on the test data that has not been used yet. The common practice is to refit the recommended
model to the original entire training data to update the regression coefficients and then use this refitted
model to evaluate the predetermined performance measure (in our case MSE) based on the testing data. The
following code shows this step.
M2.final = lm(bodyMass ~ culmenLength + culmenDepth + flipperLength, data = train.data)
predM2.final = predict(M2.final, newdata = test.data)
MSE.M2.final = mean((predM2.final - test.data$bodyMass)ˆ2)
MSE.M2.final

[1] 186024

The actual performance of the recommended model has mean squared error (MSE) is shown above.

16

0 1 2 3 4 5 6

1e
+

05
3e

+
05

Performance Evaluation via 5−fold Cross Validation

Iterations 1 to 5

M
S

E
 (

g)
M1 Avg. MSE: 340213
M2 Avg. MSE: 149221

Figure 14: Cross-validation for evaluating predictive performance of linear regression models

Remarks: There are different metrics to measure different types of performances. In this example, we are
interested in predictive performance, the mean squared error was used. If we want to evaluate the global
goodness-of-fit, we may use the following measures.

• R-squared (R2): This is the most common measure. It represents the proportion of the variance
in the dependent variable that is predictable from the independent variables. An R2 value closer to 1
indicates a better fit.

• Adjusted R-squared: This adjusts the R2 value based on the number of predictors in the model.
It is useful when comparing models with a different number of predictors, as it penalizes for adding
variables that do not improve the model significantly.

• F-statistic: This tests the overall significance of the model. It compares the model with no predictors
(intercept-only model) to the specified model. A higher F-statistic indicates that the model provides a
better fit than a model with no predictors.

• Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC): These
criteria are used for model selection. They balance model fit and complexity, penalizing models with
more parameters. Lower values of AIC and BIC indicate a better model.

4.2.2 Cross-validation in Logistic Regression

We still use the fraud data to build a logistic regression model using cross-validation and testing methods. We
first randomly split the data into 70% and 30%. The 30% of the data will be used for testing purposes. The
70% will be used for training and validation. The performance metric to be used is the AUC. The average of
the validated AUC will be compared with the AUC calculated from the testing data.

We use 10-fold cross-validation in this example. The summary of the validated AUCs is given below. Instead
of calculating specificity and sensitivity from scratch, we extract these two metrics from roc() directly in

17

this cross-validation.
fraud.data = read.csv("https://pengdsci.github.io/datasets/FraudIndex/fraudidx.csv")[,-1]
encode status variable: bad = 1 and good = 0
good.id = which(fraud.data$status == " good")
bad.id = which(fraud.data$status == "fraud")
##
fraud.data$fraud.status = 0
fraud.data$fraud.status[bad.id] = 1
nn = dim(fraud.data)[1]
train.id = sample(1:nn, round(nn*0.7), replace = FALSE)
trainDat = fraud.data[train.id,]
testDat = fraud.data[-train.id,]
each fold has 2326 observations
##
AUC.vec = rep(0,5)
color=c("#002642","#840032","#432534", "#c44900", "#0b7a75")
##
for(i in 1:5){

ID = ((i-1)*4652+1):(i*4652)
valid = as.data.frame(trainDat[ID,])
train = as.data.frame(trainDat[-ID,])
##
logit.model = glm(fraud.status ~ index, family = binomial(link = logit), data = train)
newdata = data.frame(index= valid$index)
pred.prob.train = predict.glm(logit.model, newdata, type = "response")
we next use library {pROC}
to calculate AUC
prediction = pred.prob.train
category = valid$fraud.status == 1
ROCobj <- roc(category, prediction)
AUC.vec[i] = round(auc(ROCobj),4)
if(i==1){

plot((1-ROCobj$specificities),ROCobj$sensitivities,
type="l",
main="5-fold Cross-validated ROC",
col=color[i],
xlab="1-specificty",
ylab="sensitivity",
lwd=1,
lty=1)

segments(0,0,1,1, lty=2, col="red")
} else{
lines((1-ROCobj$specificities),ROCobj$sensitivities, col=color[i], lwd=1)
}

}

18

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5−fold Cross−validated ROC

1−specificty

se
ns

iti
vi

ty

summary(AUC.vec)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.9198 0.9258 0.9261 0.9273 0.9273 0.9374

We next calculate the AUC based on the hold-out testing data. We will use
Caution, the model used to calculate the AUC must be based on the entire
training data
logit.model = glm(fraud.status ~ index, family = binomial(link = logit), data = trainDat)
###
newdata = data.frame(index= testDat$index)
pred.prob.train = predict.glm(logit.model, newdata, type = "response")
we next use library {pROC}
to calculate AUC
prediction = pred.prob.train
category = testDat$fraud.status == 1
ROCobj <- roc(category, prediction)
testAUC= round(auc(ROCobj),4)
c(testAUC = testAUC)

testAUC
0.9272

19

4.3 Additional Comments of K-Fold CV
In K-Fold Cross-Validation, K represents the number of groups into which the data set is divided. This
number determines how many rounds of testing the model undergoes, ensuring each segment is used as a
testing set once. This is a hyper-parameter that can be tuned to produce the optimal performance. However,
some heuristics can be used in practice to save some model training effort.

A smaller K (e.g., 3-5) might be faster but could yield less reliable estimates as each fold represents a larger
portion of the dataset, potentially missing out on diverse data scenarios. A larger K (e.g., 10) provides a
more detailed evaluation at the cost of increased computation. A common starting point is K=5 or K=10,
which are often enough to get a reliable estimate without excessive computation.

• K = 2 or 3: These choices can be beneficial when computational resources are limited or when a quicker
evaluation is needed. They reduce the number of training cycles, thus saving time and computational
power while still providing a reasonable estimate of model performance.

• K = 5 or 10: Choosing K = 5 or K = 10 are popular choices because they provide a good balance
between computational efficiency and model performance estimation.

• K = 20: Using a larger value of K can provide a more detailed performance evaluation. However, it
increases the computational burden and might result in higher variance if the subsets are too small.

Importance of shuffling data in K-Fold Cross-Validation

Shuffling the data in K-Fold Cross-Validation is highly recommended to enhance the validity of model
evaluation. Shuffling breaks any inherent order in the data set that could introduce bias during the validation
process. This ensures that each fold is representative of the entire data set, which is crucial for assessing how
well the model generalizes to new data. However, it’s important to avoid shuffling in cases where the sequence
of data points is meaningful, such as with time-series data, to preserve the integrity of the learning process.

Ensuring reproducibility in K-Fold Cross-Validation

Ensuring that the results of K-Fold Cross-Validation are reproducible is crucial for verifying model stability
and performance. This can be achieved by setting the random_state parameter, which ensures consistent
shuffling of data across different runs, allowing for identical data splits and thus, reproducible results.

4.4 Other Cross-Validation Methods
In addition to the K-fold cross-validation, the table below provides a comprehensive comparison of the most
popular various cross-validation methods, highlighting their unique features and best use cases to guide data
science practitioners in selecting the most effective technique for specific modeling needs.

• Stratified K-Fold Cross-Validation maintains the same proportion of class labels in each fold as
the original data set. It is great for classification tasks with imbalanced classes to maintain group
proportions.

• Leave-One-Out Cross-Validation (LOOCV) is good for both regression and classification. Each
data point is used once as a test set, with the rest as training. It is especially useful for small data sets
to maximize training data, though computationally intensive.

• Leave-P-Out Cross-Validation is good for both regression and classification. It is similar to LOOCV,
but leaves out p data points for the test set. It is ideal for small data sets to test how changes in the
data samples affect model stability.

• Group K-Fold Cross-Validation is good for both regression and classification with groups. This
method ensures no group is in both training and test sets, which is useful when data points are not
independent. It is appropriate for data sets with logical groupings to test performance on independent
groups.

20

• Stratified Group K-Fold Cross-Validation is primarily for classification with grouped data. It
combines stratification and group integrity, ensuring that groups are not split across folds. It is useful
for grouped and imbalanced data sets to maintain both class and group integrity.

K-Fold Cross-Validation is a powerful tool for evaluating machine learning models. It’s better than the simple
Train-Test Split because it tests the model on various parts of the data. It helps data practitioners trust that
the selected final model will work well on unseen data too.

5 Optimal Cut-off Probability.
The optimal point of the ROC curve is a point on the ROC curve that produces the desired sensitivity (true
positive rate - TPR) and specificity (true negative rate - TNR). It is dependent on specific applications. For
example, in clinical studies, a false negative (opposite of true negative) costs a lot more than a false
positive (opposite of true positive). In credit card fraud detection, a high false positive rate (FPR)
could cost a lot more than a high false negative rate (FNR) due to financial regulations that require
reviewing all reported suspicious fraudulent transactions, hence, causing high operational costs. No matter
what optimal point is defined, there is a corresponding cut-off probability that will be used to predict the
value of the response.

As an illustrative example (that may not be practically meaningful), we want the cut-off probability such
that the specificity is closest to the sensitivity. We will use the same fraud data set in the following code.
Note that the cut-off probability search must be based on the training data set.
fraud.data = read.csv("https://pengdsci.github.io/datasets/FraudIndex/fraudidx.csv")[,-1]
encode status variable: bad = 1 and good = 0
good.id = which(fraud.data$status == " good")
bad.id = which(fraud.data$status == "fraud")
##
fraud.data$fraud.status = 0
fraud.data$fraud.status[bad.id] = 1
nn = dim(fraud.data)[1]
train.id = sample(1:nn, round(nn*0.7), replace = FALSE)
trainDat = fraud.data[train.id,]
testDat = fraud.data[-train.id,]
##
logit.model = glm(fraud.status ~ index, family = binomial(link = logit), data = trainDat)
###
newdata = data.frame(index= testDat$index)
pred.prob.train = predict.glm(logit.model, newdata, type = "response")
we next use library {pROC}
to calculate AUC
prediction = pred.prob.train
category = testDat$fraud.status == 1
ROCobj <- roc(category, prediction)
##
sen = ROCobj$sensitivities
spe = ROCobj$specificities
SenMinusSpe = abs(sen-spe)
minID = which(SenMinusSpe == min(SenMinusSpe))
cut.off.prob = ROCobj$thresholds
###
plot((1-spe), sen, main = "Optimal ROC Point",

type = "l",
ylab = "sensitivity",
xlab = "1 - specificity")

21

segments(0, 0, 1, 1, lty = 2, col = "red", lwd = 2)
segments((1-spe[minID]), 1-spe[minID], (1-spe[minID]), sen[minID], col="purple")
points((1-spe[minID]), sen[minID], pch=19, col = "darkred", cex = 1.7)
points((1-spe[minID]), sen[minID], pch=19, col = "gold", cex = 1.2)
text(0.4, sen[minID], paste("(",round(spe[minID],5), ", ", round(sen[minID],5), ")"), cex = 0.8, col = "blue")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Optimal ROC Point

1 − specificity

se
ns

iti
vi

ty

(0.8644 , 0.86444)

The above figure shows the optimal point on the ROC curve that meets the requirements of sensitivity and
specificity. For other optimal points such as the point that maximizes the accuracy of the prediction, we can
use the same process to search the cut-off probability.

22

	Introduction
	Review of Linear and Logistic Models
	Linear Regression Model
	Logistic Regression Model
	Predictive Performance Measures
	Linear Regression
	Logistic Regression
	ROC Curve

	Example of Fraud Detection

	Data Splitting Types
	Two-way Splitting
	Three-way Splitting
	Overfitting and Underfitting
	Splitting Methods

	Cross-Validation
	K-Fold Cross-Validation
	5-Fold Cross-Validation
	Cross-validation with Linear Regression
	Cross-validation in Logistic Regression

	Additional Comments of K-Fold CV
	Other Cross-Validation Methods

	Optimal Cut-off Probability.

