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Abstract

Specifying, assessing, and selecting among candidate statistical models is

fundamental to ecological research. Commonly used approaches to model

selection are based on predictive scores and include information criteria such as

Akaike’s information criterion, and cross validation. Based on data splitting,

cross validation is particularly versatile because it can be used even when it is

not possible to derive a likelihood (e.g., many forms of machine learning) or

count parameters precisely (e.g., mixed-effects models). However, much of the

literature on cross validation is technical and spread across statistical journals,

making it difficult for ecological analysts to assess and choose among the wide

range of options. Here we provide a comprehensive, accessible review that

explains important—but often overlooked—technical aspects of cross validation

for model selection, such as: bias correction, estimation uncertainty, choice of

scores, and selection rules to mitigate overfitting. We synthesize the relevant sta-

tistical advances to make recommendations for the choice of cross-validation

technique and we present two ecological case studies to illustrate their

application. In most instances, we recommend using exact or approximate

leave-one-out cross validation to minimize bias, or otherwise k-fold with bias

correction if k < 10. To mitigate overfitting when using cross validation,

we recommend calibrated selection via our recently introduced modified

one-standard-error rule. We advocate for the use of predictive scores in

model selection across a range of typical modeling goals, such as exploration,

hypothesis testing, and prediction, provided that models are specified in

accordance with the stated goal. We also emphasize, as others have done,

that inference on parameter estimates is biased if preceded by model

selection and instead requires a carefully specified single model or further

technical adjustments.
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INTRODUCTION

The expression of scientific hypotheses as statistical
models is a fundamental component of ecological
research. In addition to expert domain knowledge, modern
statistical modeling requires substantial technical consid-
erations including the formulation of mathematical
descriptions of hypothesized relationships between vari-
ables and the structure of stochastic processes (Fox
et al., 2015). Statistical modeling also involves consider-
ation of computational aspects involved with the fitting of
models to data. When existing theory and empirical evi-
dence are insufficient to uniquely inform model choice,
alternative models can be formulated and the available
data used to assess their relative merits (Claeskens &
Hjort, 2008; Hooten & Hobbs, 2015). The use of data in
this way—to assess and ultimately select among alterna-
tive models—is called model selection. As an adjunct to
statistical modeling, model selection has become integral
to ecological research; indeed, as Tredennick et al. (2021)
assert: “confusion about how to do model selection is con-
fusion about how to do ecology”.

Cross validation is a technique based on data splitting
to make predictive assessments of statistical models.
Although the specific goal of a statistical analysis—such as
hypothesis testing or prediction—can constrain the set of
models under consideration, predictive assessment is a
broadly applicable and objective basis for both model com-
parison and selection across a range of modeling goals
(Shmueli & Koppius, 2011). As a technique for predictive
assessment, cross validation is extremely flexible due to
the breadth of predictive measures (scores) with which it
can be used (Gneiting & Raftery, 2007), the availability of
data-splitting strategies that can be employed to account
for the structure of the data and/or manage computa-
tional costs and estimation bias (Arlot, 2008), and its
broad applicability to both optimisation and Bayesian
frameworks. Recent methodological innovations, often
involving approximation methods (Vehtari et al., 2017),
have also improved the computational efficiency of
cross-validation algorithms. Further, when the predictive
measure is log likelihood, cross-validation estimates the
relative expected Kullback–Leibler divergence which is
the objective of commonly adopted information-theoretic
model selection methods such as Akaike’s information
criterion (AIC) approximation (Akaike, 1973).

An important and long-standing concern in model
selection is the issue of overfitting—the inclusion of spuri-
ous variables in a selected model. For hypothesis testing,
overfitting misleads future research and is considered
a substantial driver of the current replicability crisis
in the sciences (Benjamini, 2020). For predictive
goals, overfitting degrades the generalization of predictive

performance to new data. Although it is well known that
information-theoretic approaches, and predictive model
selection more generally, suffer a tendency to overfit, it is
less known that this proclivity is predominantly due to fail-
ure to correctly account for score-estimation uncertainty
(Piironen & Vehtari, 2017a). For model selection based on
cross validation, an effective and easily applied mitigation
strategy is the use of calibrated selection rules which iden-
tity the simplest model with comparable predictive perfor-
mance to the best-scoring model (Yates et al., 2021).

In this paper we seek to provide an accessible yet
comprehensive review on using and understanding cross
validation for model selection, with a focus on ecological
problems. Our own efforts to synthesis a coherent picture
of the current state of the model-selection literature—
which mostly appears as technical results in statistical
journals—motivated us to create a useful reference for
practitioners who are not necessarily biostatisticians. We
include and explain technical aspects that are important
but often overlooked, such as bias correction, estimation
uncertainty, choice of predictive score, and calibrated
selection rules. In addition to the technical and concep-
tual review we give clear recommendations on
cross-validation strategies including adjustments to man-
age computational demands while accounting for bias
and mitigating the risk of overfitting. Prior to an exposi-
tion of model scores and cross-validation techniques, the
first section of this paper provides an overview of the dif-
ferent goals of statistical modeling, the corresponding
purposes of model selection, and the merits of using pre-
dictive assessment. In particular we emphasize, as others
have done (Breiman & Spector, 1992; Claeskens &
Hjort, 2008), the incompatibility of model selection with
inference on model parameters. Several boxes and tables
are included in the paper to provide an easily referenced
summary of the topics reviewed or an additional level of
detail on specific subjects. We also provide two ecological
case studies which are used to illustrate many of the
methods recommended in the paper.

PREDICTIVE ASSESSMENT,
MODELING GOALS, AND THE
PURPOSE OF MODEL SELECTION

Cross validation works by splitting the available data into
a pair of training and test sets where the model is fit to
the training data and subsequently assessed on the basis
of its predictions to the test data (Hastie et al., 2009). By
repeating this process for many different splits of the
data, the average predictive performance of one or more
models is estimated. Cross-validated predictive perfor-
mance is commonly used to estimate or tune auxiliary
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parameters, often called hyperparameters, of a model
(e.g., the degree of smoothness of a spline), or to make
comparisons between a discrete set of models for the pur-
pose of selection (Arlot & Celisse, 2010).

The need for model selection arises when there is
uncertainty about which model, from a given set of candi-
dates, is best suited to achieve to a specified modeling goal
(Claeskens & Hjort, 2008). Common modeling goals
include: (1) exploration (or data mining) to generate new
hypotheses; (2) hypothesis testing for a small set of
multiple-working hypotheses; (3) prediction to new data;
and (4) causal inference based on estimated model param-
eters (Tredennick et al., 2021). Although it would be most
convenient for scientific progress if all four of these goals
could be achieved simultaneously using a single data set,
they are for the most part mutually exclusive.

The incompatibility of these four goals can be seen by
considering how models are generated in each case.
Models for exploration are generally informed by existing
theory, but only weakly, so that the full set of candidates
will necessarily include new combinations of variables or
model structures to create the possibility of discovery. In
contrast, models for hypothesis testing are strongly based
on both theoretical understanding and empirical evidence
from previous studies (Burnham & Anderson, 2002); thus,
the models are defined a priori, and model selection for
hypothesis testing is confirmatory. Models for prediction
are often generated from algorithms with complex and
obscure internal structures and might include variables
with theoretical support ranging from strong to virtually
none at all. Finally, for inference on parameter estimates
there should be just one model which is generated from
strong theoretical understanding and substantial evidence
from previous studies. Thus, the goal of causal inference is
incompatible with model selection (but see Box 1 for
recent methodological innovations).

Despite their differing objectives, model selection for
the goals of exploration, hypothesis testing, and predic-
tion can all be performed on the basis of predictive
assessment. This may seem contradictory, especially for
hypothesis testing, since it is known that the model clos-
est to “truth” is not necessarily the best predictive model
(Arif & Aaron MacNeil, 2022; Shmueli, 2010) (see Box 3
for further discussion). However, the specified modeling
goal strongly constrains which models are included in
the candidate set, and for this reason, the interpretation
of the selected model will differ even if the same method
is used to compare models across the different goals.

For example, one does not expect any one of the
models within a small set of multiple-working hypotheses
to be the best possible predictive model (compared,
for instance, to an artificial neural network trained with
all available predictors). However, given that all the

candidate models have strong theoretical support, each
corresponding to an alternative causal hypothesis, their
predictive performance when confronted with new
real-world data provides both a reality check and an objec-
tive basis for assessing their relative merits (Shmueli &
Koppius, 2011). Indeed, it is predictive performance that
underpins information-theoretic approaches to model
selection (e.g., AIC) where models are scored based on
their predictive log likelihood which is an estimate of rela-
tive expected Kullback–Leibler divergence (Akaike, 1973):
a relative measure of the information lost by approximating
(the usually unknown) true model with each candidate.

The merits of using predictive assessment as the basis
for model selection for exploratory and predictive goals
are more obvious. For exploratory analysis, the ultimate
goal of generating new scientific hypotheses to perform
future hypothesis tests or make inferences using new
data demands that models should have a causal interpre-
tation and that the inclusion of spurious variables is to be
avoided. Although modern “interpretable” techniques
such as partial dependence plots (Friedman, 2001) and
Shapely additive explanations (Lundberg & Lee, 2017)
can provide insight into correlative associations for
almost any class of statistical model, a causal interpreta-
tion requires that the model specification is consistent
with known or hypothesized casual mechanisms; for
example, specified within a structural-causal framework
(Pearl, 2010). For all modeling goals, predictive assess-
ment can be used to implement strategies that seek to
mitigate the risk of overfitting including statistical tech-
niques such as regularization (e.g., penalized regression)
or calibrated selection rules (Yates et al., 2021).

How does predictive assessment compare with other
approaches to model selection? For explanatory goals,
goodness-of-fit measures such as the proportion of varia-
tion explained would seem a natural choice for model
assessment. However this is problematic for model selec-
tion because it leads to overfitting due to a preference for
complex models where the increased flexibility fits noise in
the data. Null-hypothesis significance testing has a long tra-
dition in the sciences, but has sustained heavy criticism
due to concerns including the a priori bias toward the null
model being true, correct adjustment for multiple testing,
the requirement for models to be nested, and the arbitrary
nature of p-value thresholds (Johnson, 1999; Wasserstein &
Lazar, 2016). The predictive approach has the advantage
that all models are placed on an equal footing and models
do not need to be nested to make comparisons
(Burnham & Anderson, 2002). Still, the use of predictive
model selection is not without its challenges. Predictive
scores are random variables, such that the bias and vari-
ance of estimated scores impact selection decisions
(Piironen & Vehtari, 2017a). When two or more models
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perform comparably, assessing the “significance” of the dif-
ference between scores for the purpose of selection requires
thresholds to be set, much like null-hypothesis significance
testing.

PREDICTIVE MODEL SELECTION:
A BRIEF OVERVIEW

Model selection uses the available data to compare and
select among a set of candidate models. Models differ in

their specification, such as complexity (e.g., the number of
variables included and/or regularization methods), the
functional relationship between variables (e.g., variable
interactions or alternative non-linear functional dependen-
cies), structure (e.g., alternative grouping, autocorrelative,
or hierarchical structures), and the choice of the probabil-
ity distributions. There are many technical terms com-
monly used with model selection; Table 1 contains a
glossary of technical terms used in this paper.

For a given set of candidate models, predictive
model selection is based on estimates of the predictive

BOX 1 Valid post-selection inference

The problem of inference after selection
Using a single data set to make selection decisions, and then subsequently making inferences based on
computed statistics is rife with issues (Kabaila, 2009; Shen et al., 2004). Failure to correctly account for the
impact of the selection procedure on the bias and uncertainty of effect estimates is considered to be a leading
cause of the current replicability crisis in the sciences (Benjamini, 2020). In the context of model selection,
using data to select a preferred model and then acting as though the model was decided upon a priori, by using
the same data to estimate parameters (without further adjustments), leads to biased estimates and optimistic
confidence intervals (Hjort & Claeskens, 2003). These inferential issues apply equally to selection procedures
based on predictive assessment such as information criteria and cross validation, regularization such as penal-
ized regression and shrinkage priors, as well as null-hypothesis testing.

Some technical solutions
A suite of methodological papers that offer techniques for making valid post-selection inference have emerged
in the statistical literature in the last two decades (Zhang et al., 2022). These approaches are predominantly
concerned with linear models and the estimation of valid confidence intervals, with specialized methods for dif-
ferent selection algorithms, including the LASSO (Lee et al., 2016), AIC (Charkhi & Claeskens, 2018), and for-
ward stepwise regression (Tibshirani et al., 2016). There are more general approaches that are not conditional
on a specific algorithm or the selected model (Bachoc et al., 2019; Berk et al., 2013); however, their interval esti-
mates are more conservative than those of specialized methods. Recent advances extend valid post-selection
inference to generalized linear models (Garcia-angulo & Claeskens, 2023).

While these techniques allow for valid inferences to be made in various specialized settings, they are highly
technical and remain embedded in the statistical literature rather than emerging in the form of didactic publi-
cations for applied analysts (but see the R package selectiveInference (Tibshirani et al., 2016)). Given
the restrictions on the modeling settings in which these methods apply, post-selection inference currently has
limited utility for applications in ecology.

A practical way forward
If, at the outset of a statistical analysis, there is model-selection uncertainty, we need to ask whether we are really
ready to make inferences on parameter estimates. Using our data to perform model comparisons and publishing
the full set of results, possibly including a preferred selection, is itself a valuable research outcome. If we do decide
to make inferences, Kabaila et al. (2016) have shown that the confidence intervals for the full model (with all
potential predictors included) are comparable to those obtained using certain post-selection methods. This result
supports the intuitive notion that the large estimation uncertainty for parameters in the full model, relative to those
of a simpler submodel, is a good estimate of our overall inferential uncertainty (Harrell, 2015). Finally, one should
not use model-averaged parameters, as advocated by Burnham and Anderson (2002), as a means to account for
selection uncertainty when making inferences; unless all models are linear and there is no multicollinearity among
the predictors, this approach is invalid (Banner & Higgs, 2017; Cade, 2015; Claeskens & Hjort, 2008).
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performance (score) of each model, where performance
is quantified by a chosen loss function and estimated
using cross validation, or in some cases, information
criteria. Although selection is based on the estimated
model scores, choosing the model with the best score
can lead to overfitting due to score-estimation uncer-
tainty; thus, selection rules which account for estima-
tion uncertainty can be applied to identify the simplest
model with comparable predictive performance. The
predictive model-selection process is summarized in
Figure 1.

MODEL SCORES

Fundamental to predictive model selection is the a
priori selection of a suitable predictive measure called
a score which forms the basis for model assessments
and comparisons. Starting with the notion of a loss

function, this section reviews the definitions and theo-
retical properties of some commonly used scores for
both regression and classification problems. We make
recommendations for score selection according to the
modeling context.

Loss functions, discrepancies, and scores

A loss function L is used to quantify predictive perfor-
mance. In the regression setting, two commonly used
functions are:

L y, byð Þ¼ y�byk k2 squared errorð Þ
L y, byð Þ¼ log p yjbyð Þ log likelihoodð Þ,

where y and by denote vectors of observed and fitted
responses, respectively, k k2 is the L2-norm (the “sum of
squares”) and p is the model likelihood, if available.

TAB L E 1 Glossary of terms.

Term Definition

Calibration Quantification of the significance of expected score differences (e.g., to determine when the
performance of two models is comparable)

Confusion matrix A matrix summarizing the predictive performance of a binary classifier

Cross validation The use of data splitting to estimate predictive performance

Data-generating model The true but usually unknown generating mechanism for the available data

Divergence The difference between the expected losses of the true and an approximating model

Full model A model that includes all available predictors

Hyperparameter A parameter that governs model fitting or a parameter of a prior distribution

Information criterion A within-sample estimator of Kullback–Leibler divergence

Information-theoretic Based on the principles of information theory

Kullback–Leibler divergence Divergence based on log-density (information) loss

LASSO a type of penalized regression that can lead to
rejection of weak predictors

Loss function A function that numerically quantifies the predictive performance of a model

MCC a confusion-matrix metric

Metric (Of a confusion matrix) a statistic based on the entries of a confusion matrix

Objective function A function that is optimized when fitting a model (e.g., log-likelihood)

One-standard error rule A selection rule calibrated by score-estimation uncertainty

Overfitting The inclusion of spurious predictors in a model, leading to imprecision in predictions

Penalisation Regularization via addition of a complexity penalty to the objective function

Regularization A statistical method to control/constrain the effective complexity of a model

Score Out-of-sample loss, averaged over test and training data

Tuning Using test data to determine the value of a hyperparameter (e.g., using cross validation)

TSS a confusion-matrix metric

Underfitting The failure to include important predictors in a selected model, leading to bias

Abbreviations: LASSO, least absolute shrinkage and selection operator; MCC, Matthew’s correlation coefficient; TSS, true skill statistic.
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Associated with a given loss function is a divergence and
a score, defined as follows:

Loss Lm ¼L y, bymð Þ ð1Þ

Divergence Dm ¼Ey L y, ym�ð Þ½ ��Ey L y, bymð Þ½ � ð2Þ

Score Sm ¼ ExEy L y, bym xð Þ
� �h i

, ð3Þ

where m = 1, …, M indexes candidate models, m* is
the true (but usually unknown) data-generating model,
and all expectations are taken over the distribution of
the (multi-dimensional) data. The score (3) is the
expected divergence (up to an additive constant) or the
double-expected loss, averaging over the randomness
in both the training data x and the representative test
data y. The term “score” does not have a common
definition across the statistical literature. In the context
of predictive assessment, the loss function is often
called the scoring rule (Gneiting & Raftery, 2007), while

estimates of the double-expected loss are commonly
called scores, such as AIC scores (Hastie et al., 2009)
or cross-validation scores (James et al., 2013; Tredennick
et al., 2021). Here we use the term to denote both the
abstract and the estimated double expected loss. When
L is log likelihood, the corresponding divergence is the
Kullback–Leibler divergence, and the score (relative
expected Kullback–Leibler divergence) is the usual quan-
tity estimated in information-theoretic model selection
(e.g., AIC or cross validation).

The first term in the divergence is an unknown,
but fixed constant common to all models of the same
data, and can therefore be ignored when assessing the
relative divergence of candidate models. Despite this
simplification, it is generally not possible to estimate
Dm, since the data-generating model is unknown. In
practice, given a finite data set, the double-expected
loss (i.e., the score) is much more amenable to statisti-
cal analysis (Hastie et al., 2009). For this reason it is
the score, not the divergence, that forms the basis of
model selection.

Objec�ve func�on
(likelihood, squared error, ...)

Fit models
(op�misa�on, Bayesian es�ma�on)

Score (loss func�on)
(e.g., log density, squared error, 

misclassifica�on loss, Brier score, 
spherical score,

confusion-matrix metric, …)

Es�mate model scores
(cross-validated loss)

Compare score es�mates 
and select model

(lowest score, modified one-standard-
error rule, ...)

Cross valida�on method
(e.g., k-fold, leave-one-out, 

nested, blocked, stra�fied, …)

Considera�ons when choosing
a method:
• Es�ma�on proper�es (e.g., 

bias, variance, consistency)
• Computa�onal cost
• Condi�onal structure (e.g., 

autocorrela�on, hierarchy)

Considera�ons when choosing
a score:
• Theore�cal proper�es (e.g., 

informa�on-theore�c, strictly 
proper, local, sensi�vity to 
prevalence)

• Costs/rewards of predic�ve 
performance

• Se�ng: regression or 
classifica�on

• Alignment with objec�ve 
func�on

F I GURE 1 Overview of the model fitting and model selection process. Given data and a set of candidate models, the process proceeds

from fitting and score estimation, to comparison and selection. Models are fit with respect to a chosen objective function, and score

estimation is based on the selection of both a loss function and an estimation method—application of the latter usually requires multiple fits

of each model. Statistical summaries of the estimated scores (e.g., means, standard deviations, and correlations) are used in conjunction with

a chosen selection rule to compare and possibly select a preferred model.
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Commonly-used scores and their
properties

What options do we have for loss functions and their
associated scores? Moreover, how do we make an appro-
priate choice? The choice of score must reflect the model-
ing problem at hand, taking account of the cost and
benefits of differing predictive performance as well as the
objective functions used to fit candidate models
(Gneiting, 2011; Vehtari et al., 2017). For
likelihood-based estimation, including both optimisation
and posterior densities, log likelihood is a common choice
as it is information-theoretic and it coincides with the
objective function of model fitting (i.e., [maximum] log
likelihood). Squared error coincides with the objective of
least-squares regression and it is equivalent to log likeli-
hood for homoscedastic Gaussian models. For classifica-
tion problems, common choices are log loss, the Brier
score, the spherical score, and misclassification (zero-one)
loss (Gneiting & Raftery, 2007), in addition to metrics
derived from the entries of the confusion matrix, such as
κ, F1, Matthew’s correlation coefficient (MCC), true skill
statistic (TSS), and many more (Allouche et al., 2006;
Chicco et al., 2021) (see Table 2 for a summary of some
common scores and Box 2 for definitions and an overview
of confusion matrices and associated metrics).

In addition to alignment with the objective function,
other considerations when choosing a score are the theo-
retical properties it possesses; the most important of these
being propriety and locality (Bernardo, 1979). A score is
proper if it is optimized by the true data-generating distri-
bution, and it is strictly proper if it is uniquely optimized
by this distribution; thus proper scores reward predic-
tions which are closer to the “truth”. A score is local if it

depends only on the predicted density at the observed
response i:e:; p y jbyð Þð Þ.

The class of scores associated with the Bregman diver-
gences (Zhang, 2008), which includes log likelihood,
squared error, and misclassification loss are all proper
scores; however, the latter is neither strictly proper nor
local (Gneiting & Raftery, 2007). The non-locality, or dis-
tance insensitivity, of misclassification loss is easily dem-
onstrated for a binary response; for example, the
predicted probabilities p = 0.6 and p = 0.9 attain the
same score (i.e., 0, no loss) for the response y = 1, using
the classification threshold c = 0.5, despite the latter
being much closer in probability. Notably, the mean
absolute error j y�by j is not a proper score (see Gneiting
and Raftery (2007) for an example).

Recommendations

For likelihood-based regression models, log likelihood is
the recommended loss function because it is strictly
proper, information-theoretic, and accommodates a
broad class of modeling structures. For classification
problems, log loss is recommended when the properties
of strict propriety and locality are deemed important, oth-
erwise MCC or TSS are examples of general-purpose met-
rics to be used when all of the entries in the confusion
matrix entries are needed to characterize the costs and
rewards of predictive performance (see Box 2). These two
metrics are identified because they are not sensitive to
class prevalence; however, there are a plethora of options
available, including simple misclassification loss, and we
recommend further investigation for specific applications
(Luque et al., 2019).

TAB L E 2 Summary of common scores and associated loss functions.

Setting Name of score Loss functiona Propriety Locality

Regression log likelihood log p y jbyð Þ Strictly proper Local

(Mean) squared error y�byk k2 Strictly proper Not localb

(Mean) absolute error y�byk k1 Not proper Not local

Classificationc log loss log pj Strictly proper Local

Brier (quadratic)
P

k � Ω I j¼ kð Þ�pkð Þ2 Strictly proper Not locald

Spherical pj=
P

k � Ω pkð Þ2 Strictly proper Not locald

Misclassification losse I y≠bycð Þ Proper Not local

Confusion-matrix metrice,f f(Mc) Not proper Not local

aExcept for f(Mc), loss functions for classification are defined for a single datum.
bLocal for homoskedastic Guassian errors.
cpk ¼ p kjbyð Þ denotes the predictive probability of class k�Ω, where Ω indexes all possible classes. pj ¼ p y jbyð Þ is the predictive probability of the observed class
y= j. I(x) is the indicator function, returning 1 if x is true and 0 otherwise.
dLocal for jΩj = 2, that is, binary classification.
eThe subscript c denotes the (tuneable) threshold for the binary case Ω = {0, 1}, such that byc ¼ I p1 > cð Þ.
fA summary of common metrics based on the confusion matrix M = Mc is provided in Box 2.
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BOX 2 Confusion matrices and metrics

Confusion matrix
A confusion matrix summarizes the predictive performance of a binary (two-class) classifier. Labeling one class
positive and the other negative, the matrix entries are the counts of the four prediction outcomes: true positives
(TP), false positives (FP), false negatives (FN), and true negatives (TN).

True class

Positive Negative

Positive TP FP
Predicted class

Negative FN TN

Tunable threshold
For models that predict the (positive) class probability p, rather than a dichotomous outcome, a threshold c is
applied such that the predicted class is positive if p > c, else negative. The threshold can be treated as a
hyperparameter of the model and tuned to maximize a selected metric using cross validation—nested cross valida-
tion should be used when model selection is preceded by hyperparameter tuning (see Nested cross validation).

Metrics
To use the confusion matrix for model comparison or parameter tuning it must be summarized as a scalar statistic
or metric. Although confusion-matrix metrics are not usually strictly proper scores, they are a flexible class of scores
which can be tailored to application-specific needs, such as accounting for class imbalance in the data and asymmet-
ric cost weighting of the prediction outcomes (e.g., when a FN is more costly than a FP). The literature contains a
plethora of existing metrics to choose from and we present here the definitions of some that are commonly used:

Accuracy¼ TPþTN
TPþTNþFPþFN

κ¼ 2� TP�TN�FP�FNð Þ
TPþFPð Þ FPþTNð Þþ TPþFNð Þ FNþTNð Þ

Sensitivity¼ TP
TPþFN

TSS¼ sensitivityþ specificity�1

Specificity¼ TN
TNþFP

MCC¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp

F1 ¼ 2TP
2TPþFPþFN

:

The true skill statistic (TSS, Allouche et al., 2006) and Matthew’s correlation coefficient (MCC, Matthews, 1975)
are particularly useful because they are not sensitive to class imbalance. Recent studies suggest that MCC is
more truthful and informative than κ, F1, accuracy, and even the strictly proper Brier score (Chicco
et al., 2021).

Estimation using cross validation
Confusion-matrix metrics can be estimated using cross validation by populating the matrix with the aggregate test
outcomes of a single k-fold iteration (see Cross-validation techniques). Repeated k-fold cross validation can be used
to estimate the sampling variability of the metric where k must be less than n since leave-one-out has only one
unique split. We use repeated 10-fold cross validation in the scat classification example to estimate MCC.

8 of 24 YATES ET AL.
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CROSS-VALIDATION TECHNIQUES

As summarized earlier, cross validation is the applica-
tion of data splitting to estimate the predictive perfor-
mance of one or more candidate models. Cross
validation works by fitting each model to a subset of the
available data (the training set) and then comparing the
models’ predictive capacities (loss) on the remaining
portion of the data (the test set). To improve the esti-
mate, the splitting procedure is usually iterated by sys-
tematically selecting different subsets of data and
summarizing the overall predictive performance across
iterations (Arlot & Celisse, 2010). Despite its conceptual
simplicity, cross validation is a theoretically rigorous
method to estimate the score (3) associated with a given
loss function (1) (Zhang, 2008). This section reviews many
common variants of cross validation, their associated
options, and their relative merits in terms of statistical
properties and computational costs. Recommendations
are given according the modeling context and available
computational resources.

Data-splitting schemes

There are many variants of cross validation, each charac-
terized by different data-splitting schemes. A commonly
used scheme is k-fold, where the available data is split
into k (approximately) equal-sized subsets (i.e., “folds”)
which generates k distinct pairs of training/test sets,
obtained by removing one fold at a time (the test set)
from the full data set. This scheme can be applied once,
for a single initial split (ordinary k-fold), or it can be
repeated many times for different splits (repeated k-fold).
The score estimate for a single k-fold cross validation is

bSk ¼ 1
n

Xn
i¼1

L yi, by�j i½ �
i

� �
, ð4Þ

where i = 1, …, n indexes the data points, j = 1, …, k
indexes the folds, and the superscript �j[i] indicates that
the training set for the fitted value excluded the fold
containing the ith data point.

An alternative to k-fold is leave-d-out, which involves
the repeated removal of d (randomly selected) test points.
For a sufficiently large number of iterations, the mean
leave-d-out estimate approaches the repeated k-fold esti-
mate for d ≈ n/k; however, k-fold is preferable as it guar-
antees of balanced draw of samples and has lower
variance (see Box 3) (Burman, 1989). An important limit-
ing case of both k-fold and leave-d-out is leave-one-out,
which is equivalent to k-fold for k = n.

Ordinary, stratified, and blocked cross
validation

For a given splitting structure, the assignment of data
points to test and training sets can be uniformly random,
which is typical, or it can depend on the values of one or
more categorical variables (stratified cross validation),
or the assignment can be determined by the spatial or
temporal “distance” between training and test points
(blocked cross validation).

Stratified cross validation is generally applied to
latent-variable (or random-effects) models to balance
group membership (i.e., the proportion of data within each
group level) across training sets or to leave-one-group-out
of the training set entirely. These two alternatives corre-
spond to conditional-likelihood (i.e., prediction to existing
group levels where latent effects are treated as [regular-
ized] model parameters) and marginal-likelihood
(i.e., prediction to new group levels where latent effects
are “integrated out”) foci, respectively (Fang, 2011; Merkle
et al., 2019). We explore these two foci further in the
Pinfish example (see Examples), where we apply both
leave-one-out and leave-one-group-out to a set of
non-linear hierarchical models.

Blocked cross validation omits training points within a
certain “distance” of the test data to account for spatial or
temporal autocorrelation. It is important to use blocked
cross validation when spatial and/or temporal correlation
is visible in the model residuals (e.g., in a spatial
correlogram) (Fletcher & Fortin, 2018; Roberts et al., 2017).
These structured data-assignment schemes ensure that the
test data are conditionally—with respect to the model—
independent (or at least conditionally exchangeable), a
pre-requisite for cross-validated score estimates to be unbi-
ased (Gelman et al., 2013; Milà et al., 2022).

Bias-corrected cross validation

Cross-validated score estimates are generally biased
upward (i.e., the expected loss is overestimated) due to the
training set being necessarily smaller than the full data set,
but the bias is easily corrected (Arlot & Celisse, 2010). The
bias reduces as the size of training set increases, such that
k = n (i.e., leave-one-out) has the minimum bias of all
k values in k-fold cross validation. Indeed, the bias of
leave-one-out is usually negligible and for k ≥ 10, the bias
is often small enough that correction is not needed (Hastie
et al., 2009). It is advisable, when possible, to check this
assertion by computing and comparing the bias correction
for the least- and most- complex models.

A bias-correction term can be estimated, without any
additional model fits, using the method of Burman

ECOLOGICAL MONOGRAPHS 9 of 24
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(1989). For k-fold cross validation, the pointwise bias cor-
rection νi is the difference between the loss value for the
model trained on the full data set and the average loss of
the predictions from the k training folds:

νi ¼ L yi, byið Þ� 1
k

Xk
j¼1

L yi, by�j
i

� �
: ð5Þ

The bias-corrected score estimate is bSk� ¼bSkþν,
where ν¼ 1

n

P
νi. Using (4) and (5), bSk� can be expressed

as a pointwise sum which facilitates bias-corrected

estimation of the score variance for use with calibrated
model selection (see Model selection for details). For
log-density loss, bSk� can be used to estimate the
bias-corrected effective number of parameters (see
Examples). For scores which are not evaluated pointwise
(e.g., those based on the confusion matrix), it is generally
not possible to estimate a bias-correction term using (5).
In these cases, bias can be managed by selection of k, for
example, k>10.

Bias correction is important in cross validation
because score-estimation bias increases with model com-
plexity and more complex models can be over-penalized.

BOX 3 Bias-variance trade-off

Choosing the best predictive model: In model selection, the problem of finding the “best” predictive model
is often viewed as a bias-variance trade-off: to find the “sweet spot” between underfitting (i.e., simple models
with high bias and low variance) and overfitting (i.e., complex models with low bias and high variance) (Hastie
et al., 2009). For squared-error loss, this trade-off is made explicit by the decomposition:

E bym� ym�ð Þ2
h i

¼ E ym�½ ��E bym½ �ð Þ2þVar ym� �bym½ �þVar ε½ �
¼ bias2þpredictive varianceþ irreducible error:

This decomposition reveals why, for squared-error loss, the model closest to truth (i.e., with minimal bias) is
not necessarily the best predictive model (Shmueli, 2010). Using a strictly proper score, however, such as log
likelihood (see Commonly used scores and their properties), does at least guarantee that the true data-generating
model uniquely attains the optimal true score. However, in real-world applications all models are inevitably
misspecified and scores are estimated using finite data. Thus, when the goal is hypothesis testing, care must be
taken to specify models based on causal hypotheses (lest correlated, but non-causal variables be selected), and
to account for score-estimation uncertainty when making selection decisions (see Mitigating overfitting using
calibrated selection rules).

Choosing k in k-fold cross validation: It is sometimes claimed that there is a bias-variance trade-off when
selecting the value of k in k-fold cross validation (James et al., 2013), however the statistical literature tells a
more nuanced story. Although the bias of k-fold cross validation as a score estimator is always reduced by
increasing k, it is difficult to make universal statements about a bias-variance trade-off because the effect of
k on the variance depends on the estimation setting (e.g., objective function or score choice) as well as the
stability of the training algorithm (e.g., model sensitivity) (Arlot & Celisse, 2010). For example, k = n is known to
have the lowest bias and the lowest variance of all k values in linear regression (Burman, 1989)–this analytic
(and asymptotic) result is conjectured to be true in other regression settings (Arlot & Celisse, 2010). In contrast,
on the basis of simulation studies, it is often recommended to use a much smaller k = 5 or k = 10, especially for
classification problems (Cawley & Talbot, 2010; Hastie et al., 2009).

Yet even when conclusive statements can be made about the relationship between the variance and the
choice of k, the variance of the score is not necessarily the correct quantity to examine (Breiman &
Spector, 1992). Arlot and Lerasle (2016) suggest that the variance of the score differences Var(Sk,m � Sk,m0) is a
more important quantity (to minimize) since model selection ultimately concerns model comparisons not score
estimation per se. For least-squares density estimation, Arlot and Lerasle (2016) show that Var(Sk,m � Sk,m0)
reduces with k, however close-to-optimal values are attained for k ≥ 10, affirming the existing advice (for this
setting at least) to choose k = 10 as a minimum value when computational cost prohibits the use of
leave-one-out.

10 of 24 YATES ET AL.

 15577015, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1557, W
iley O

nline L
ibrary on [02/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Failure to correct for this complexity-dependant bias
results in a complexity penalty which undermines the
interpretation of the selected loss function and the associ-
ated divergence and score. For example, model compari-
sons based on predictive log likelihood are a poor
approximation to information-theoretic comparisons if
the expected loss estimates have a complexity-dependent
bias. Although the inclusion of complexity-dependent
bias is sometimes used as a strategy to mitigate
overfitting (Cawley & Talbot, 2010), we recommend
using minimally biased estimates, to retain score inter-
pretation, instead applying calibrated selection rules to
account for the predominant cause of overfitting:
score-estimation uncertainty (see Model Selection for fur-
ther discussion).

Nested cross validation

In addition to discrete model selection, cross validation
is commonly used to tune continuous model hyper-
parameters such as regularization parameters (see
Regularization techniques) (Hastie et al., 2009). For this
use, the cross-validated score estimate is computed across
a range of fixed values of the hyperparameter to deter-
mine the value which optimizes the estimate. Calibrated
selection rules can also be used to select the hyper-
parameter value (see Mitigating overfitting using
calibrated selection rules). When using cross validation
for both model selection and tuning, hyperparameters
must be tuned separately for each training set using
an additional inner layer of cross validation; this is
called nested cross validation (Cawley & Talbot, 2010).
Although it can be computationally expensive, nested
cross validation is necessary to mitigate overfitting and
place all models on an equal footing. We provide an
illustration of nested cross validation in the scat classifi-
cation example.

Approximate cross validation

Approximate cross-validation techniques provide an
alternative to data splitting (with repeats) and multiple
model fits, instead typically requiring just a single fit
using all of the available data. Most approximate
cross-validation methods express the leave-one-out score
estimate as a weighted sum of the pointwise loss values
for an initial fit, where the weights are a function of the
estimated leverage hi of each data point. For linear
regression with squared error loss, the leverage can be
computed analytically from the design matrix X (for
which the element Xij is the value of the jth predictor

[or the indicator value of a corresponding factor level] for
the ith response), permitting exact computation of the
leave-one-out estimate for mean squared error
(Davison & Hinkley, 1997):

bSLOO ¼ 1
n

Xn
i¼1

yi�byi
1�Hii

� �2

, ð6Þ

where Hii are the diagonal elements of the hat matrix
H = X(XTX)�1XT (calculated in R using the function
hatvalues). An useful variant of (6), called generalized
cross validation (Craven & Wahba, 1978; Wood, 2017), is
obtained by replacing Hii with its average value
1
n trace Hð Þ, which is generally faster to compute than the
individual values. The exact method (6) has been
extended as an approximate method to the loss functions
associated the entire class of Bregman divergences (e.g.,
log likelihood; see Commonly-used scores and their prop-
erties) Zhang (2008); however, we are unaware of any
software implementation of these approximate formulas.

In a Bayesian setting, the leave-one-out estimate of
the predictive log likelihood can be approximated using
smoothing techniques (Vehtari et al., 2017). In many
instances, this estimate can be computed from a single
set of Markov Chain Monte Carlo samples, however
additional sets of samples may be needed if there are
points of high leverage. The advantages of using this tech-
nique include: flexibility of application to non-linear,
multi-response and hierarchical models, low computational
cost, and ease of implementation using the R package loo
(Vehtari et al., 2017).

Choosing a cross-validation technique

When choosing a cross-validation technique, there is an
inherent trade-off between the statistical properties, for
example, the bias and variance, and the computational cost.
Here we organize recommendations and considerations
for choosing cross-validation according the dependency
structure of the data. An overview of the cross-validation
techniques presented in this paper is provided in Table 3.

Data are conditionally independent

In terms of statistical properties, leave-one-out cross vali-
dation is generally the gold standard (see Box 3), and in
many instances it is practical to compute leave-one-out
exactly by fitting the model n times—computation time
can be greatly reduced by using a parallel implementa-
tion on a modern multicore processor.

ECOLOGICAL MONOGRAPHS 11 of 24
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If leave-one-out is too slow, k-fold or approximate
leave-one-out are necessary. When an approximate
leave-one-out method exists for the types of models being
fitted and the chosen score, then this option is usually
the fastest and requires no further bias correction.
Otherwise, k-fold can be used. In terms of minimizing
bias and variance, it is better use of computational
resources to perform a single estimate, setting k as large
as possible, rather than averaging repeated estimates
using smaller k values (Burman, 1989). For k < 10, bias
correction is usually required.

Data have structural dependencies

When the model residuals are not independent due to
temporal, spatial, or other grouping structure in the data,
an appropriately structured data-splitting scheme should
be selected; for example, blocked or leave-one-group-out.
Structured residuals can arise because the model has

failed to adequately capture non-independence of data,
or because predictions are being extrapolated to new
regions or group levels.

Unlike ordinary leave-one-out, the blocked version
will need bias correction if the number of case deletions
constituting the left-out block is large (Burman et al.,
1994); for example, if deletions exceed 10% of the data. If
blocked leave-one-out or leave-one-group-out are too
slow to compute, alternative options include blocked
k-fold, or leaving out more than one group out at a time;
detailed recommendations for the use of blocked cross
validation in ecology can found in the review by Roberts
et al. (2017).

MODEL SELECTION

The selection of the best-performing model from a set
of candidates is often framed as a bias-variance
trade-off with respect to model complexity (see Box 3

TAB L E 3 Summary of statistical results and recommendations for common cross-validation techniques. Further details and references

are provided in the main text.

Data-splitting
scheme

Estimation
method Recommendations and statistical results

k-fold Biased For log-density regression, analytic results suggest k ≥ 10 is required to ensure that the bias
and variance are close to optimal. Similar advice, based on simulation studies, is given for
classification problems (see Box 3).

Bias-corrected Bias-corrected estimates are recommended for k < 10 and blocked cross validation, when many
test data are omitted. Calculation of the corrections does not increase computational cost.

Repeated Useful for estimating sampling variability when score estimates do not factor into a pointwise
sum (e.g., confusion-matrix metrics). k-fold cross validation repeated R times has higher
bias and variance than a single iteration of (R � k)-fold cross validation.

Stratified Used for grouped data to balance group membership across folds in k-fold cross validation.
Not applicable or meaningful to leave-one-out.

Leave-one-out Exact The preferred method when computationally achievable (and is asymptotically equivalent to
AIC). Bias is neglible. For linear regression, a computational shortcut permits an analytic
solution with a single model fit.

Approximate An excellent alternative to exact leave-one-out, especially for slow-fitting models. Various methods
exist, some of which provide diagnostics to assess validity of the approximated estimate.

Leave-d-out d’ n
K Equivalent to k-fold for a large number of repetitions, but otherwise, unlike k-fold, it does not

guarantee a balanced draw of test samples. Computationally inefficient.

d> n
2 Used for asymptotic selection of the true data-generating model (consistent selection);

a suggested value is dc = n � n/(log(n) � 1) (Shao, 1993). Consistent selectors such as
leave-dc-out and BIC are not appropriate in ecology as the true model is almost certainly
not in the candidate set

Blocked Recommended when model residuals are spatially or temporally autocorrelated. Block size
depends on the strength of correlation as a function of distance or time. Bias correction is
sometimes required for large blocks.

Leave-one-group-out Used for grouped data to assess model performance by predictive performance to new group
levels. More than one group can be left out to reduce the no. model fits.

Abbreviation: AIC, Akaike’s information criterion.
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for elaboration), where the optimal trade-off is
achieved asymptotically by selecting the model with
the best-estimated predictive score (Hastie et al., 2009).
However, simply selecting the model with the best
score is sub-optimal due to overfitting resulting from
score-estimation uncertainty (Yates et al., 2021).
Overfitting is a serious concern for all modeling goals
since the inclusion of spurious effects leads to false dis-
covery in exploration, false confirmation in hypothesis
testing, and degrades the performance of predictive
models. The first part of this section reviews tech-
niques to mitigate overfitting by taking account of
score-estimation uncertainty. The second part reviews
the notion of regularization, wherein cross validation
is often used to tune model complexity in a continuous
manner, via shrinkage, rather than choosing among
discrete alternative models.

Mitigating overfitting using calibrated
selection rules

Overfitting due to estimation uncertainty in predictive
scores occurs because of the asymmetry in the predictive
cost of excluding an important variable versus including
a spurious one (Tredennick et al., 2021). Including a
spurious variable will degrade predictive performance,
however the resulting score difference is usually small
relative to the estimation uncertainty of the score differ-
ences; thus, an overfitted model is often selected due to
random variation alone (Yates et al., 2021). On the other
hand, excluding an important variable usually results in
a score difference that is large relative to estimation
uncertainty, which makes underfitting much less proba-
ble than overfitting.

An effective strategy to mitigate overfitting due to esti-
mation uncertainty is to select the least-complex model
whose performance is deemed “comparable” to best scoring
model (Piironen, Paasiniemi, & Vehtari, 2020). To quantify
the notion of comparable, the set of cross-validated loss
values (e.g., the pointwise losses using leave-one-out) can
be used to estimate the sampling variability of the score
estimates which, in turn, can be used to visualize and sug-
gest nominal performance thresholds for the possible selec-
tion of a simpler model.

The original one-standard-error rule, proposed by
Breiman et al. (1984), is an example of this approach,
where the performance threshold is simply the standard
error of the best score, σbest; that is, a simpler model is
selected when its score estimate is within σbest of the best
score. However, this threshold can be problematic
because it fails to account for the covariance of the scores
(e.g., all models will predict poorly to a given outlier).

This typically results in overestimating the relative varia-
tion between models, which can lead to underfitting.

Our recent modification of the one-standard-error
rule addresses this issue by using the pairwise corre-
lation coefficient of the best score with each alterna-
tive score (denoted ρbest,m) to define the following
correlation-adjusted standard errors, indexed by model m
(Yates et al., 2021):

σadjm � σbest
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρbest,m

p
: ð7Þ

To visualize and apply the modified
one-standard-error (m-OSE) rule, σadjm is added as an error
bar to a plot of the score estimates of each model, where
σadjbest ¼ 0 since ρbest,best= 1. The model selected by the rule
is the least-complex model whose adjusted error interval
includes the estimate of the best-scoring model (e.g., see
Figures 2, 5a,b). The variance terms can be estimated
using a normal approximation of the distribution of the
loss values arising from cross-validation folds, pointwise
log-likelihood values, or non-parametric bootstrap sam-
ples. The definition (7) is derived so that σadjm ¼ σbest when
model scores are independent (i.e., the original
one-standard-error rule), and σadjm ¼ 0 when model scores
are maximally correlated (i.e., the best-scoring model is
selected). In some instances, the model with the best
score coincides with the model selected by the modified
rule, providing assurance in such cases that the
best-scoring model is not overfit. We illustrate the use of
the modified one-standard-error rule in both of the exam-
ples herein.

Another measure of estimation uncertainty that
appears in the recent model-selection literature is the
standard error of the difference between the best score
and each alternative model (Piironen, Paasiniemi, &
Vehtari, 2020):

σdiffm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ΔSmð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2mþσ2best�2ρbest,mσmσbest

q
, ð8Þ

where ΔSm = Sbest � Sm. Estimates of ΔSm sample the
null-hypothesis distribution that the mth model does not
improve upon the best-scoring model; thus, σdiffm can be
used to calculate probabilities related to pairwise model
comparisons.

The correlation-adjusted σadjm is closely related to σdiffm .
Indeed, the former is obtained from a generalization of
the latter, subject to the aforementioned selection condi-
tions for ρ= 0 and 1. When used as a performance
threshold in a modified one-standard-error rule, the two
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thresholds will often select the same model, since both
account for correlation in the score estimates (see Yates
et al. (2021) for further discussion). When the data set is
small (n<100) or performance estimates of the best
models are similar (i.e., those with ΔbS<4), Sivula et al.
(2020) have shown that both the bootstrap and the nor-
mal approximation provide unreliable estimates of the
standard error for log-likelihood loss. However, in the
context of mitigating overfitting, these estimation issues
are most likely benign, because the simpler model is
favored as a consequence.

For hypothesis generation and predictive goals, esti-
mates of the correlation of model scores can also be used
to assess the merits of model enlargement (Garthwaite &
Mubwandarikwa, 2010; Gelman et al., 2013). For example,
when a subset of the best-scoring models have similar
score estimates but low correlation, then improved predic-
tive performance may be obtained using model averaging
of the predictions (not parameters) (Dormann et al., 2018).
It is also possible that each of these best-scoring models
captures independent aspects of the true data-generating
process, which could inform future theoretical develop-
ments and subsequent hypothesis-driven studies.

Estimated performance thresholds such as σadjm are a
useful guide for selecting a preferred model for the
purpose of mitigating overfitting, but we caution against
their indiscriminate use without appropriate model
checking. Laudable though the goal of using data-driven
processes to make objective selection decisions is, we
reiterate the perspective expressed by Vehtari et al. (2019)
“that we need to abandon the idea that there is a
device that will produce a single-number decision rule”.
We suggest that model-selection analyses be published
with a summary of the score estimates for all candidate
models, including their variation and covariation as
described in this section; this gives readers the opportu-
nity to directly interpret performance comparisons and
selection decisions.

Regularization techniques

Regularization includes a large suite of statistical
methods for controlling/constraining the complexity of a
model. Indeed, the use of calibrated selection rules, and
variable-selection approaches more generally, can be
viewed as a type of discrete regularization, where a subset
of parameters in the global model are set to zero, thereby
reducing model complexity. This discrete approach can
be contrasted with continuous regularization techniques
that use penalized regression such as the least absolute
shrinkage and selection operator (LASSO, Zou &
Hastie, 2005), non-uniform or sparsifying priors for

Bayesian approaches (Piironen & Vehtari, 2017b;
van Erp et al., 2019), or the inclusion of hierarchical
structures. All of these techniques constrain parameter
estimates, shrinking them toward zero (or a distribu-
tional mean), but without necessarily removing them
from the (global) model. For a detailed summary of
regularization methods and their interpretation, see
Hooten and Hobbs (2015).

For continuous approaches, the effective reduction
in complexity is governed by one or more regularization
parameters, which can be estimated from the data—
Bayesian priors are a natural exception, unless adopting the
empirical Bayes approach. For hierarchical approaches,
the associated regularization parameters are implicitly esti-
mated given that they are a function of the estimated scale
parameters. In penalized regression, cross validation is
typically used to tune the regularization parameters for opti-
mal predictive performance with respect to a chosen score
(see Nested cross validation). For example, in elastic net
regression, the regularized parameter estimatesbθ¼ �bθ1, bθ2,…, bθpÞ are those minimizing the penalized
function (Zou & Hastie, 2005):

f x;bθ� �
þλ αkbθk1þ 1�αð Þkbθk2� �

, ð9Þ

where f is the objective function (usually mean squared
error or negative log likelihood), and θk k1 ¼Pp

j¼1 j θj j
and θk k2 ¼Pp

j¼1θ
2
j are the L1- and L2-norm of the vector

of model parameters, respectively. The regularization
parameter λ determines the strength of the penalty,
enforcing a trade-off between the size of the model’s
parameter estimates (the shrinkage or effective complex-
ity) and the minimized value of the unconstrained
objective function f. The hyperparameter α (0≤ α≤ 1)
indexes a family of regularized models for which the
extreme values α= 1 and α= 0 correspond to LASSO
and ridge regression, respectively. Both α and λ
can be tuned using cross validation (e.g., using a
two-dimensional grid of candidate (α, λ) values). A fur-
ther useful property of elastic net regression (in addition
to the regularization of model complexity) is its remark-
able tolerance to the inclusion of correlated variables via
the parameter-grouping effect of the penalization
strategy, which alleviates the deleterious effects of
multicollinearity on estimation (Dormann et al., 2013;
Hastie et al., 2015). We illustrate the use of LASSO,
ridge, and elastic net regularization in the first example.

Some regularization techniques such as the LASSO and
sparsifying priors can be viewed as both continuous—in the
sense of providing constrained parameter estimation—and
discrete—in that a subset of the model parameters can be
shrunk all the way to zero, or at least very close to zero,
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leading ultimately to their removal. A recently developed
method that makes use of both continuous regularization
and discrete selection is Bayesian projective inference
(Piironen, Paasiniemi, & Vehtari, 2020). The method uses
a global reference model (usually the full model) to sim-
ulate new data for the purposes of both model selection
and to project the uncertainty of the global posterior
on to the subspace of a selected submodel. Advantages
of using a reference model in lieu of fitting submodels
directly to the original data include a reduction in the
variance of model selection, improved calibration of
post-selection predictive uncertainties, and resilience to
overfitting in variable-selection problems where the
number of predictors exceeds the number of data points.
We illustrate the use of Bayesian projective inference in
the first example.

EXAMPLES

In this section we use two biological case studies to illus-
trate many of the cross-validation-based model-selection
approaches described in this paper. To accompany these
analyses, we provide an online code repository for
reproducing the complete workflow, including: data
preparation, model fitting, model selection, and plot crea-
tion (see Data availability statement). The code provides a
template which other users can readily adapt and cus-
tomize to use cross validation in their statistical learning
problems.

Scat classification

Data on animal feces in coastal California is recorded in
the scat data set available via the R package caret
(Kuhn, 2022). The data consist of DNA-verified species
designations as well as fields related to the time and place
of the collection and the morphology of the scat
itself. The aim of the analysis is to predict the biological
family (felid or canid) for each scat observation, based on
eight morphological characteristics, scat location, and
carbon-to-nitrogen ratio; see Yates et al. (2022) and the
original data publication (Reid, 2015) for further details
concerning the data.

Part 1: Logistic regression with MCC score

We begin in a parametric setting, using logistic regression
to model the binary class probabilities. We fit generalized
linear models using maximum likelihood, but compare
model performance to select variables using estimates of

MCC, as described in Box 2. Setting the probability thresh-
old equal to the prevalence (felid: 0.514) (Liu et al., 2005),
we use 10-fold cross validation, repeated 50 times, to gen-
erate a MCC estimate for each model for each repetition.
Figure 2 shows the mean MCC estimate and modified
standard error (7) of the highest scoring model for each
level of model complexity using all combinations of
the 10 predictors (1024 models in total). To mitigate
overfitting, we applied the modified one-standard-error
rule which suggests selection of the two-parameter model
comprising the predictors carbon–nitrogen ratio and the
number of scat pieces; the one-predictor model comprising
only carbon–nitrogen ratio is close in score and should
also be considered. The mean model scores and estimation
uncertainty for the top 10% of all the models are shown in
Appendix S1: Figure S1. The model fitting took 220 s using
40 Intel i7 cores.

As an alternative to selection among a discrete set of
models, we illustrate the use of penalized regression (9),
applying LASSO (α = 1) and ridge (α = 0) regularization
to the global logistic model. In each case, we tune the
regularization parameter λ using cross-validated MCC
estimates with the same set of k-fold data splits used
for the discrete approach. The cross-validation-selected
LASSO model comprised just one (regularized) parame-
ter associated with the predictor carbon–nitrogen ratio
(Figure 3a,b). Despite its simplicity, the lasso model
had a higher cross-validated MCC estimate than the

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 10
No. parameters

M
C

C

Score estimates for scat models

F I GURE 2 Comparison of logistic models using repeated 10-fold

cross validation to estimate Matthew’s correlation coefficient (MCC).

The dots and bars depict the mean MCC estimate and the modified

standard error (7), respectively. After applying the modified

one-standard-error rule, the selected model comprises two predictors:

Carbon–nitrogen ratio and the number of scat pieces.
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ridge model which kept all 10 predictors (by
construction), strongly regularizing all of the associated
parameters (Figure 3b,e). We also applied elastic-net
regularization to the scat classification problem for
which the optimal value of the tuned hyperparameter
was α = 0.175 (see Appendix S1: Figure S2) which
selected six predictors (Figure 3c,f). We used the R pack-
age glmnet to fit the penalized regression models
(Friedman et al., 2010).

Part 2: Regularizing priors and Bayesian
projective inference

In a Bayesian setting, ridge- and LASSO-type regression
can be implemented using Gaussian and Laplacian
(two-sided exponential) priors, respectively (Hastie
et al., 2015). An alternative choice is the regularized horse-
shoe prior (Piironen & Vehtari, 2017a) which provides

support for a proper subset of parameters to be far from
zero. Using the brms package, we fit the global logistic
scat model using: (1) Laplacian priors (i.e., LASSO), (2) reg-
ularized horseshoe priors, and (3) weakly-informative
Gaussian priors (i.e., weak ridge-type regression). Using
the loo package to estimate approximate leave-one-out
cross-validation scores, the horseshoe variant was the best
predictive model, followed by the LASSO (ΔbS¼ 2:1,
σdiff= 0.9), and the weakly-informative priors (ΔbS¼ 7:9,
σdiff= 3.4). Appendix S1: Figure S3 shows the posterior
distributions for all 11 parameters for each of the three
models; the strongly regularizing effect of the horseshoe
prior is clearly visible, leaving only one variable
(carbon–nitrogen ratio) with support far from zero.

To assess the merits of using a simpler submodel, we
apply Bayesian projective inference (see Regularization
techniques for details). Using the projpred package
(Piironen, Paasiniemi, Catalina, et al., 2020) and taking
as a reference model the fitted regularized horseshoe
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M
C

C
�

(a)
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−0.40

−0.20
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−4 −3 −2
log(�)

�

(d)

LASSO
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(b)
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log(�)

(e)

Ridge
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(f)
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F I GURE 3 Penalized regression for scat classification models: least absolute shrinkage and selection operator (LASSO), ridge, elastic

net regression. Plots (a), (b), and (c) show the cross-validated Matthew’s correlation coefficient (MCC) estimates as a function of the logged

regularization parameter λ; the circled point is the largest λ value (i.e., the most regularized model) within one standard error (7) of the

value that maximizes MCC. Plots (d), (e), and (f) show the corresponding trajectories of the regularized estimates of the model parameters bθ,
each denoted by a unique color (labels ommited for clarity). The colored points denote the final parameter estimates for the selected

λ-values: For all cases, significant shrinkage is evident; for the LASSO, just one non-zero predictor is retained (carbon–nitrogen ratio);

for elastic net, six non-zero predictors are retained).
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model, we use approximate leave-one-out-based forward
step selection to determine the optimal size of the alter-
native submodel and which variables to include. The
selection results shown in Figure 4, suggest that the
inclusion of just one variable (carbon–nitrogen ratio) has
the best estimated predictive performance. As a further
step (see Appendix S1: Figure S4), post-selection posterior
densities can be generated by projection of the reference
posterior onto the selected submodel.

Part 3: Nested cross validation to compare
logistic and random forests models

Machine-learning methods are increasingly used for classifi-
cation problems, but their non-parametric (or “black-box”)
nature makes comparison with parametric approaches
difficult. Here we illustrate the use of cross validation to
compare the classification skill of a discretely selected para-
metric modeling approach (as per part 1) to a tuned
machine-learning random forest algorithm (an ensemble of
decision trees) (Breiman, 2001). We use nested cross valida-
tion to completely separate model training, which includes
variable selection and hyperparameter tuning, from the esti-
mation of predictive performance. For the outer folds, we
use 10-fold cross validation, repeated 50 times, and for the
inner folds ordinary 10-fold cross validation. Thus, for each
of the 500 outer training sets, 10 inner folds are used to

select variables for the (discrete) logistic models, to tune the
tree depth for the random forest models, and to tune the
probability threshold for all models (see Box 2: Tunable
threshold). Each repetition of the outer 10-fold cross valida-
tion generates a single MCC estimate for each selection
approach. To reduce computation time, we set the number
of trees in the random forest to the fixed value 500 and we
included only the top 10% of the 1024 discrete logistic
models based on the MCC scores estimated in part 1.
The analysis took 280 s using 40 cores.

The tuned random-forest model performs better than
the discretely-selected logistic model: the mean MCC
score estimates are 0.25 and 0.375, respectively, and the
modified standard error of their difference is 0.06. Here,
to simplify the exposition, we used the linear logistic
models introduced in Part 1, but a fairer comparison
of these learning algorithms would permit the inclusion
of non-linear and interaction terms in the logistic
models. We further simplified the presentation by
tuning only a single hyperparameter, however complex
learning algorithms typically contain large numbers of
hyperparameters for which tuning can be computation-
ally expensive; for an overview of existing and emerging
techniques for hyperparameter tuning or optimisation,
see Feurer and Hutter (2019).

PINFISH GROWTH

Length, age and sex data for pinfish (Lagodon rhomboides)
from Tampa Bay, are recorded in the pinfish data set avail-
able via the R package fishmethods (G. A.
Nelson, 2022). The aim of the analysis is to determine
which allometric growth function (see below) best
describes the relationship between the length and age
measurements of pinfish, while accounting for the effect
of sex and haul on the model parameters (the data com-
prise measurements from 45 separate fishery hauls, see
(G. Nelson, 2002) for details). We take as candidate
growth models the following commonly used non-linear
functions (Tjørve & Tjørve, 2010):

Gompertz Gð Þ LG að Þ¼ L0e
�e �K a�t0ð Þð Þ

logistic logð Þ L log að Þ¼ L0=
�
1þ e�K a�t0ð Þ�

vonBertalanffy vBð Þ LvB að Þ¼L0
�
1� e�K a�t0ð Þ�,

ð10Þ

where a is the age and L is the (modeled) length. For
each function, the parameters L0, K, and t0 denote the
length asymptote, the growth rate, and the initial length,
respectively. From inspection of Figure 5c, there is an
obvious effect of haul on L0; thus, we model L0 hierarchi-
cally, using haul-level intercepts (i.e., Gaussian distrib-
uted random intercepts). For each growth function

0 2 4 6 8 10

−15

−10

−5

0

No. variables in the submodel

�Ŝ
Projective step selection

F I GURE 4 Bayesian projective inference applied to Bernoulli

scat-classification models. The dots and bars depict the mean and

standard error of the difference of the approximate leave-one-out

log likelihood estimates ΔbS, with respect to the reference model

(dashed line), for each increment of the projective step-selection

process. The simplest submodel, with performance comparable to

the reference model, contains only one-predictor: Carbon–nitrogen
ratio.
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x = G, log, vB, the most complex model xjLKt includes
the two-level predictor sex as a fixed effect on L0, K, and
t0, specified as follows:

x jLKt

yi �N μi, σð Þ
μi ¼Lx ai;L0,i, Ki, t0,ið Þ
L0,i ¼ βL,0þβL,sex1 i½ � þbhaul i½ �
b�N 0, τð Þ
Ki ¼ βK,0þβK,sex1 i½ �
t0,i ¼ βt,0þβt,sex1 i½ �,

ð11Þ

from which simpler submodels are obtained by setting a
subset of the terms β �,sex1 to zero. For example, vBjK is
the von Bertalanffy growth model including sex as a fixed
effect on K only (i.e., βL,sex1 ¼ βt,sex1 ¼ 0). All models
include the haul-level L0 intercepts bhaul[i]. We fit all
24 models in a Bayesian framework using R package
brms (Bürkner, 2017). Model priors were normal or
student-t distributions with standard deviations in the
range of 0.3 to 10—sufficiently narrow to aid chain con-
vergence while large enough to exert minimal influence
on the posterior distributions (see Yates et al., 2022 for
further details).

Gompertz logistic von Bertalanffy

0 K L t KL Kt Lt KLt 0 K L t KL Kt Lt KLt 0 K L t KL Kt Lt KLt
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−10
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� Ŝ
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�

Leave-one-out cross validation(a)

Gompertz logistic von Bertalanffy

0 K L KL Kt KLt 0 K L KL Kt KLt 0 K L KL Kt KLt
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Leave-one-group-out cross validation(b)
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Conditional prediction: vB|0(c)
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F I GURE 5 Model comparison and predicted curves for pinfish growth models. The plots on the left, (a) and (c), and right,

(b) and (d), relate to a conditional and marginal focus, respectively. Applying the modified one-standard-error rule to each

focus, the fitted growth curves of the selected models, circled in (a) and (b), are plotted alongside the data in (c) and (d). The data

and curves in (c) are colored by haul according to the modeled haul-level length asymptote L0,haul. The dots and bars in (a) and

(c) are the mean and standard error (7) of the score differences, respectively. The model variants xjt and xjLt are omitted from (d)

for clarity due to their mean ΔbS estimates being significantly more negative the others. The envelope in (d) is the 95% credible interval.
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We illustrate two approaches to model selection using
cross validation:

1. Conditional focus using approximate approximate
leave-one-out cross validation; and

2. Marginal focus using leave-one-group-out cross
validation.

The conditional focus concerns model predictions to
existing hauls, conditional on the haul-level L0 estimates
which are treated as (regularized) model parameters.
In this scenario, individual fish measurements consti-
tute conditionally independent test samples, thereby
permitting the use of leave-one-out cross validation to
estimate and compare model performance. A possible
interpretation of this focus is that, after accounting
for unmeasured effects of haul on the data-generating
process (e.g., changes in the measurement process due
to differing apparatus or human expertise), estimates of
conditional model performance quantify the capacity of
candidate growth functions to predict within-haul
growth trends and variation.

The marginal focus concerns model predictions to
new hauls, where the estimate of between-haul variation,
τ in (11), is used in combination with the residual varia-
tion σ to explain the total variability of the modeled
response around the mean population-level growth
curve. The use of leave-one-group-out cross validation in
this case provides a direct means to estimate the predic-
tive merits of the marginalized model, without having to
actually integrate (i.e., marginalize) the likelihood over
the hierarchical distribution of haul-level intercepts (this
can be slow and difficult for non-linear models). A possi-
ble interpretation of the marginal focus is that having
estimated the haul-level variability of the length asymp-
tote, leave-one-group-out cross validation quantifies the
capacity of candidate growth functions to model the
population-level mean growth curve, predicting to new
fish measurements in new hauls.

The model-selection results for both types of focus
are shown in Figure 5a,b, where the modified
one-standard-error rule has been applied using the
standard error (7). The best-performing growth model
differed between the two types of focus, highlighting the
importance of selecting a data-splitting scheme according
to the predictive focus. However, in both types of focus,
the application of the modified one-standard-error rule
suggested selection of the least complex variant xj0 which
excluded sex as a fixed effect on any of the model param-
eters. This does not mean that sex does not have an effect
on fish growth, only that, given the available data and
the specified set of candidate models, accounting for sex
does not change which growth model is selected.

Figure 5c,d show the fitted curves of the selected model
for each focus.

In many instances, researchers will have an a priori
reason to model a group-level effect as either fixed or
random. For example, random effects may be chosen to
“borrow strength” across group levels, to account for
unmeasured group-level effects that vary around a
population-level mean, to partition variance via marginal-
ization, or to provide regularization to improve model pre-
diction and/or convergence of the parameter-estimation
algorithm (Hobbs & Hooten, 2015). It is possible, how-
ever, to use the data (via cross validation) to investigate
whether a random effect or a fixed effect is the preferred
choice, or at least to compare the two sets of estimates
(e.g., to determine the amount of shrinkage). To illustrate,
we apply approximate leave-one-out cross validation
to the fixed and random variants of the conditional
model vBj0, obtaining an estimated score difference of
2.17 (σdiff = 1.85) in favor of the random model. To com-
pare the complexity of each model, we compute the effec-
tive number of parameters (Gelman et al., 2013):

pCV ¼ℓWS�ℓCV, ð12Þ

where ℓWS ¼
Pn

i¼1 log p yij yð Þ and
ℓCV ¼

Pn
i¼1 log p yijy�k i½ �� �

are the within-sample (i.e.,
trained on the full data set) and cross-validated log likeli-
hood of the data, respectively. Using the approximate
leave-one-out cross-validation estimates, the effective
number of parameters for the random model is 42.6 com-
pared to 45.7 for the fixed model—the latter is less than
the nominal count of 48 fixed parameters due to the
inherent regularization of the Bayesian estimation pro-
cess. The weak preference for the random model, and the
reduction of just 3.1 (SE= 0.6) effective parameters, is
reflected in the mild shrinkage of the haul-level L0 esti-
mates for the random model compared to the fixed
(Appendix S1: Figure S5).

For clarity of exposition, we have omitted more com-
plex models, such as those including haul-level intercepts
for K0 and t0. The inclusion of more than one group effect
will generally lead to a multivariate hierarchical structure
with corresponding correlation terms. However, assum-
ing there are sufficient data to estimate the model param-
eters, model selection using cross validation can be
implemented in these more complex cases in the same
way as we have demonstrated above.

DISCUSSION

We have presented a comprehensive review on under-
standing and applying cross validation for model
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selection, with a focus on how ecologists would use this
approach. This includes an overview of commonly used
techniques, theoretical aspects and recent developments,
as well as practical guidance for implementation.
Although it is difficult to provide universal advice for
using cross validation, since the choice of data-splitting
scheme and score depends on the modeling context, in
most instances we recommend leave-one-out or approxi-
mate leave-one-out to minimize bias. Otherwise we rec-
ommend k-fold with k set as large as practicably possible.
If k < 10 bias correction should be used when available.
Further, the use of blocked, leave-one-group-out, or strat-
ified data splitting should be investigated when the data
are autocorrelated or hierarchically structured. To miti-
gate overfitting, we recommend calibrated selection via
the modified one-standard-error rule (Yates et al., 2021)
which accounts for the predominant cause of overfitting:
score-estimation uncertainty.

There are many software packages for the R program-
ming language that aid the implementation of cross
validation. The packages caret (Kuhn, 2022) and
tidymodels (Kuhn & Wickham, 2020) are particularly
versatile, incorporating a broad class of model types (via
commonly used auxiliary packages) ranging from gener-
alized linear models and penalized regression to (tuned)
machine-learning methods and certain classes of
Bayesian models. The tidymodels package is a com-
posite of several helper packages including rsample for
data splitting (e.g., nested k-fold) and yardstick for
estimating both pre- and user-defined model scores; these
packages can be used independently of the integrated
workflow of the parent package. Bias-corrected k-fold
cross validation can be performed using the packages
bestglm (McLeod et al., 2020) or boot (Canty &
Ripley, 2021), although support is limited to generalized
linear models; the latter permits the use of custom loss
functions. For fully Bayesian approaches, the package
loo (Vehtari et al., 2017) implements an approximate
leave-one-out method, requiring as an input the
log-likelihood evaluated at a set of posterior simulations
of the parameter estimates. All of the aforementioned
packages support parallel processing. When existing soft-
ware is unsuitable, custom code can be developed.
Generally speaking, if the set of candidate models is able
to be fit to a training subset of the data and subsequently
predicted to a test set, then cross-validation implementa-
tion is usually possible, requiring only data-splitting,
repeated model-fitting, and subsequent aggregation of
the score estimates. Existing software can help with each
of these steps.

The ever-increasing uptake of Bayesian methodology
in ecology in recent decades has been facilitated by the

steady publication of both pedagogical texts (e.g., Hoeting
et al. (1999); Ellison (2004); Gelman et al. (2013); Hobbs
and Hooten (2015)) and integrated software (e.g., BUGS,
JAGS, PyMC, Stan). Recently, there has been a surge in
the development of Bayesian model-selection techniques
(e.g., Vehtari et al. (2017) and Bürkner et al. (2020, 2021)),
wherein information-theoretic methods based on cross val-
idation have played a central role. The parallel develop-
ment of Hamiltonian Monte Carlo (HMC, Neal, 2011)
sampling methods has brought significant efficiency gains
which are readily accessible to ecologists via the rstan

(Stan Development Team, 2020) package or its
user-friendly front-end packages rstanarm (Goodrich
et al., 2020) and brms (Bürkner, 2017). The combination
of Hamiltonian Monte Carlo with approximate
leave-one-out cross validation permits highly efficient
model fitting and score estimation for a broad range of
model-selection contexts, including historically challeng-
ing model classes such as non-factorized data models
(e.g., observation-level latent-variable models) (Bürkner
et al., 2021)—equivalent methods do not exist outside of
the Bayesian setting. None of these implementations
require informative priors, although they could certainly
be used where appropriate. Thus, there is a compelling
case for the use of Bayesian methods for model specifica-
tion and model selection in ecology (at least for
likelihood-based inference) where the increasing use of
complex hierarchical model structures is a natural fit with
sampling-based estimation which has robust estimation
properties and a high tolerance for model complexity.

In most model-selection problems, cross validation
can be used to estimate scores and suggest a preferred
model, but is the selected model good enough and why
cannot we make valid inference after selection? In terms
of model checking, it is important to note that cross vali-
dation is not a replacement for data simulation
(e.g., posterior predictive checks or the parametric boot-
strap) or within-sample measures such as the proportion
of deviance explained or graphical checks of residual dis-
tributions. These techniques are used to assess the ade-
quacy of the selected model to generate plausible data
where expert knowledge is often required to determine
what constitutes adequate in a given modeling context
(Gabry et al., 2019). Given the selected model has passed
model checking, the issue of valid inference remains.
Although it is common practice, it is highly problematic
to make inferences using the parameter estimates of the
selected model fit to the full data set without accounting
in some way for model-selection uncertainty—problems
include inflated effect sizes (i.e., selection-induced bias)
and underestimated uncertainty intervals (Hjort &
Claeskens, 2003). Some recently developed (and highly
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technical) methods exist to make valid post-selection
inferences, although much work is needed to make these
relevant and accessible to ecological analysts (see Box 1
for further discussion).

Cross validation is clearly a practical and versatile
technique for model selection in ecology: a research field
in which statistical modeling has been increasingly domi-
nated over the last two decades by the use of information
criteria (especially AIC). Yet given the broad applicability
of cross validation, and the now near-ubiquitous
availability of multi-core parallel computing, one might
ask whether the prominent role of information criteria
is coming to an end. Information Criteria are generally
easier and faster to compute than conventional
cross-validation estimates (except leave-one-out in linear
regression), but the need for bias correction imposes
limitations on the data and models, leading to an
ever-growing set of information-criterion variants to
accommodate specialized settings; for example, AICc

(corrected) (marginal) mAIC, (quasi) QAIC, (focussed)
FIC, and the widely applicable information criterion
(WAIC). High-performance parallel computation and the
development of accurate approximate cross-validation
methods now makes cross validation comparable with
information criteria for speed, obviating the need for
such a large number of specialized variants, while at the
same time increasing the reach of model-selection tech-
niques into complex modeling contexts where traditional
information criteria remain inapplicable
(e.g., deep-learning approaches such as artificial neural
networks). In a Bayesian setting, Vehtari et al. (2017)
advocate for the use of (approximate) leave-one-out over
the widely applicable information criterion (WAIC) due
to improved stability, although both are considered supe-
rior to the commonly used AIC and DIC. Given the
demonstrable utility and generality of cross validation for
comparing a diverse range of statistical models, fitted to
simple or highly complex data sets, we foresee its increas-
ingly widespread adoption in the domain of ecology.
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