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1 Introduction
We discussed the relationship between variables in the previous two modules. The continuous variable with a
normal distribution is called the response (dependent) variable and the other variable is called the explanatory
(predictor, independent, or risk) variable. If the predictor variable is a factor variable, the model is called the
ANOVA model which focuses on comparing the means across all factor levels. If the predictor variable is
continuous, the model is called simple linear regression (SLR). Note that all predictor variables are assumed
to be non-random.

2 The Practical Question
Maximum mouth opening (MMO) is also an important diagnostic reference for dental clinicians as a preliminary
evaluation. Establishing a normal range for MMO could allow dental clinicians to objectively evaluate the
treatment effects and set therapeutic goals for patients performing mandibular functional exercises.

To study the relationship between maximum mouth opening and measurements of the lower jaw (mandible).
A researcher randomly selected a sample of 35 subjects and measured the dependent variable, maximum
mouth opening (MMO, measured in mm), as well as predictor variables, mandibular length (ML, measured
in mm), and angle of rotation of the mandible (RA, measured in degrees) of each of the 35 subjects.
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Figure 1: MMO, ML, and RA

The question is whether the maximum mouth opening (MMO) is determined by two variables simultane-
ously. We want to assess how these two variables (ML and RA) impact MMO simultaneously.

If we pick one predictor variable at a time, ML, to build a simple linear regression model and ignore the other
predictor variable (RA), you only get the marginal relationship between MMO and ML since you implicitly
assume that the relationship between MMO and ML will not be impacted by RA. This implicit assumption
is, in general, incorrect. We need to consider all predictor variables at the same time. This is the motivation
for studying multiple linear regression (MLR).

3 The Process of Building A Multiple Linear Regression Model
The previous motivation example involves two continuous predictor variables. In real-world applications, it is
common to have many predictor variables. Predictor variables are also assumed to be non-random. They
could be categorical, continuous, or discrete. In a specific application, you may have a set of categorical,
continuous, and discrete predictor variables in one data set.

3.1 Assumptions of MLR
There are several assumptions of multiple linear regression models.

• The response variable is a normal random variable and its mean is influenced by explanatory variables
but not the variance.

• The explanatory variables are assumed to be non-random.

• The explanatory variables are assumed to be uncorrelated to each other.

• The functional form of the explanatory variables in the regression model is correctly specified.

• The data is a random sample taken independently from the study population with a specified distribution.

Some of these assumptions will be used directly to define model diagnostic measures. The idea is to assume
all conditions are met (at least temporarily) and then fit the model to the data set.

3.2 The Structure of MLR
Assume that there are p predictor variables {x1, x2, · · · , xp}, the first-order linear regression is defined in the
following form
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Figure 2: Dental Data for the multiple linear regression model (MLR)

y = β0 + β1x1 + β2x2 + · · · + βpxp + ϵ

β0 is the intercept, β1, β2, · · · , βp are called slope parameters. if βi = 0, the associated predictor variable xi

is uncorrelated with response vararible y. If βi > 0, then y and xi are positively correlated. In fact, β1 is the
increment of y as xi increases one unit and other predictors remain unchanged.

The response variable is assumed to be a normal random variable with constant variance. If the first-order
linear regression function is correct, then

y → N(β0 + β1x1 + β2x2 + · · · + βpxp, σ2).

This also implies that ϵ → N(0, σ2). The residual of each data point can be estimated from the data with an
assumed linear regression model.

For ease of illustration, let’s consider the case of the MLR with two predictor variables in the motivation
example.

MMO = β0 + β1ML + β2RA + ϵ

is the first-order linear regression model. The following figure gives the graphical annotations of the
fundamental concepts in linear regression models. This is a generalization of the regression line (see the
analogous figure in the previous module for the simple linear regression model).

Since MMO is a normal random variable with constant variance, MMO → N(β0 + β1ML + β2RA, σ2), or
equivalently, ϵ → N(0, σ2). The residuals are defined to be the directional vertical distances between the
observed points and the regression plane.
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Figure 3: Illustrative regression plane: MMO vs ML and RA

In some practical applications, we may need the second-order linear regression model to reflect the actual
relationship between predictor variables and the response variable. For example,

MMO = α0 + α1ML + α2RA + α3ML2 + α4RA2 + α5ML × RA + ϵ

is called (the second-order) linear regression model. With the second-order terms in the regression function,
we obtain the regression surface as shown in Figure.

Figure 4: Illustrative regression surface: MMO vs ML and RA

If the second-order linear regression is appropriate, then ϵ → N(0, σ2) and E[MMO] = α0 + α1ML + α2RA +
α3ML2 + α4RA2 + α5ML × RA. The residuals of the second-order linear regression model are defined to be
the directional distance between the observed points and the regression surface.
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3.3 More on Model Specifications
In the above section, we introduced both first- and second-order polynomial regression models. In general, it
is not common to use high-order polynomial regression models in real-world applications.

• Interaction effect - it is common to include interaction terms (i.e., the cross product of two or more
predictor variables) in the multiple linear regression models when the effect of one variable on the
response variable is dependent on the other predictor variable. In other words, the interaction terms
capture the joint effect of predictor variables. It is rare to have third-order or higher-order
interaction terms in a regression model.

• Dummy variables - All categorical predictor variables are automatically converted into dummy
variables (binary indicator variables). If categorical variables in the data are numerically coded, we
have to turn these numerically coded variables into factor variables in the regression model.

• Discretization and Regrouping - Discretizing numerical predictor variables and regrouping categori-
cal or discrete predictor variables are two basic pre-process procedures that are actually very common
in many practical applications.

– Sometimes these two procedures are required to satisfy certain model assumptions. For example, if
a categorical variable has a few categories that have less than 5 observations, the resulting p-values
based on certain hypothesis tests will be invalid. In this case, We have to regroup some of the
categories in meaningful ways to resolve the sparsity issues in order to obtain valid results.

– In many other applications, we want the model to be easy to interpret. Discretizing numerical
variables is common. For example, we can see grouped ages and salary ranges in different
applications.

3.4 Estimation of Regression Coefficients
A simple and straightforward method for estimating the coefficients of linear regression models is to minimize
the sum of the squared residuals - least square estimation (LSE). To find the LSE of the regression coefficients,
we need to

• choose the (first-order, second-order, or even high-order) regression function (see 3D hyper-plane or
hyper-surface in the above two figures as examples).

• find the distances between the observed points and the hyper-plane (or hyper-surface). These distances
are the residuals of the regression - which is dependent on the regression coefficients.

• calculate the sum of squared residuals. This sum of the residuals is still dependent on the regression
coefficients.

• find the values for the regression coefficients that minimize the sum of the squared residuals. These
values are called the least square estimates (LSEs) of the corresponding regression coefficients.

R function lm() implements the above LSE algorithm to find the regression coefficients. We have used this
function in ANOVA and simple linear regression models.

3.5 Model Diagnostics
Unlike simple linear regression models, the primary assumptions of the regression model focus on the normal
distribution of the response variable and the correct regression function. For multiple linear regression models,
we need to impose a couple of assumptions in addition to those in the simple linear regression models.

• Residual Diagnostics

One of the fundamental assumptions of linear regression modeling is that the response variable is normally
distributed with a constant variance. This implies ϵ → N(0, σ2).
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After obtaining the LSE of the regression coefficients, we can estimate the residuals and use these estimated
residuals to detect the potential violations of the normality assumption of the response variable. To be more
specific, we consider the first-order polynomial regression, the estimated residual of i-th observation is defined
to be ei = MMO − β̂0 + β̂1ML + β̂2RA

If there is no violation of the normality assumption, we would expect the following residual plot and Q-Q plot.

Figure 5: Good residual plot and normal Q-Q plot

Some of the commonly seen poor residual plots represent different violations of various assumptions. We
can try to use various transformations (such as Box-Cox power transformations) of the response variable to
correct the issue.

Figure 6: Poor residual plots representing various violations of the model assumptions

• Multicollinearity

Some of the predictor variables are linearly correlated. The consequence of multi-collinearity causes to
unstable LSE of the regression coefficients (i.e., the LSEs of the regression coefficients are sensitive to a small
change in the model). It also reduces the precision of the estimate coefficients and, hence, the p-values are
not reliable.

Multicollinearity affects the coefficients and p-values, but it does not influence the predictions, precision of
the predictions, and the goodness-of-fit statistics. If our primary goal is to make predictions, we don’t need
to understand the role of each independent variable and we don’t need to reduce severe multicollinearity.
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If the primary goal is to perform association analysis, we need to reduce collinearity since both LSE and
p-values are the keys to association analysis.

To detect multicollinearity, we can use the variance inflation factor (VIF) to inspect the multicollinearity of
the individual predictor variable. There are some different methods to reduce multicollinearity. Centering
predictor variables is one of them and works well sometimes. Some other advanced modeling-based methods
are covered in more advanced courses.

3.6 Goodness-of-fit and Variable Selection
There several different goodness-of-fit measures are available for the linear regression model due to the
assumption of the normality assumption of the response variable.

• Coefficient of Determination

We only introduce the coefficient of determination R2 which measures the percentage of variability
within the -values that can be explained by the regression model. In simple linear regression models, the
coefficient of determination R2 is simply the square of the sample Pearson correlation coefficient.

• Statistical Significance and Practical Importance

A small p-value of the significant test for a predictor variable indicates the variable is statistically significant
but may not be practically important. On the other hand, some practically important predictor variables
may not achieve statistical significance due to the limited sample size. In the practical applications, we
may want to include some of the practically important predictor variables in the final model
regardless of their statistical significance.

• Model Selection

One of the criteria for assessing the goodness-of-fit is the parsimony of the model. A parsimonious model is
a model that accomplishes the desired level of explanation or prediction with as few predictor variables as
possible. There are generally two ways of evaluating a model: Based on predictions and based on goodness of
fit on the current data such as R2 and some likelihood-based measures.

R has an automatic variable selection procedure, step(), which uses the goodness-of-fit measure AIC (Akaike
Information Criterion) which is not formally introduced in this class due to the level of mathematics needed
in the definition, but we can still use it to perform the automatic variable selection. This tutorial gives
detailed examples on how to use step() (link).

4 Applications of Linear Regression Models
The two major types of applications of regression models are association analysis and predictive analysis. For
illustration, we only consider the following simple linear regression model.

y = β0 + β1x + ϵ.

where ϵ ∼ N(0, σ2).

4.1 Association Analysis
The association analysis in regression modeling focuses on how the change of predictor variables is associated
with the change of the response variable. As discussed earlier, the coefficient β1 measures the association
between the response y and predictor variable x1.

Example: A dietetics student wants to look at the relationship between calcium intake and knowledge about
calcium in sports science students. Further, she wants to know if knowledge about calcium can be used to
predict the calcium intake of the students. The following table shows the data she collected.
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include_graphics("img/CalciumKnowledge.png")

Figure 7: Calcium intake vs knowledge about calcium

The initial analysis is always to look at the relationship between calcium intake and knowledge about calcium.
We present the scatter plot to visualize the above relationship in the following.
CalciumData = read.table("calcium.txt", header = TRUE)
plot(CalciumData$Calcium, CalciumData$knowledge)

10 20 30 40

50
0

60
0

70
0

80
0

90
0

11
00

CalciumData$Calcium

C
al

ci
um

D
at

a$
kn

ow
le

dg
e

8



The above scatter plot shows a significant linear relationship. We choose a linear regression model to
characterize the linear relationship between the two variables.
m01 = lm(Calcium ~knowledge, data = CalciumData)
pander(summary(m01)$coef)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.37 5.659 -2.54 0.02052
knowledge 0.05601 0.007044 7.951 2.675e-07

The above table shows that the regression coefficient of knowledge is significantly different from zero (p-value
< 0.05). The coefficient β1 = 0.05601 means that the calcium intake will increase 0.05601 unit if the
knowledge of calcium increases one unit. Caution: association does not implies causation!. This is
the typical analysis in classical inferential statistics and is used in most of the regression analysis.

As a special association analysis, causal analysis requires the underlying data being collected from special
designs. This is not the primary data science problem.

4.2 Predictive Analysis
The prediction analysis in the classical statistical analysis is based on some strict assumptions such as i.i.d.
sample and normal distribution of random error term. The performance of prediction is measured with a
predictive interval.

In data science, we use primarily data-driven approaches such as cross-validation to assess the performance of
prediction. The particular performance metric is the means square error (MSE) based on the test data. The
details will be discussed in later modules.

5 Case Studies
This section provides two case studies on the use of regression analyses.

5.1 Case Study 1
We use the dental data in the motivation example for the case study.
MMO=c(52.34, 51.90, 52.80, 50.29, 57.79, 49.41, 53.28, 59.71, 53.32, 48.53, 51.59,

58.52, 62.93, 57.62, 65.64, 52.85, 64.43, 57.25, 50.82, 40.48, 59.68, 54.35,
47.00, 47.23, 41.19, 42.76, 51.88, 42.77, 52.34, 50.45, 43.18, 41.99, 39.45,
38.91, 49.10)

##
ML=c(100.85, 93.08, 98.43, 102.95, 108.24, 98.34, 95.57, 98.85,98.32, 92.70, 88.89,

104.06, 98.18, 91.01, 96.98, 97.85, 96.89, 98.35, 90.65, 92.99, 108.97, 91.85,
104.30, 93.16, 94.18, 89.56, 105.85, 89.29, 92.58, 98.64, 83.70, 88.46, 94.93,
96.81, 93.13)

##
RA = c(32.08, 39.21, 33.74, 34.19, 35.13, 30.92, 37.71, 44.71, 33.17, 31.74, 37.07,

38.71, 43.89, 41.06, 41.92, 35.25, 45.11, 39.44, 38.33, 25.93, 36.78, 42.02,
27.20, 31.37, 27.87, 28.69, 31.04, 32.78, 37.82, 33.36, 31.93, 28.32, 24.82,
23.88, 36.17)

DentalData = as.data.frame(cbind(MMO = MMO, ML = ML, RA = RA))

• Pair-wise Scatter Plot
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This pairwise scatter plot tells whether there are significant correlations between numerical predictor
variables.
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Pairwise scatter plot: MMO vs ML and RA

Figure 8: Pair-wise scatter plot

We can see the following patterns from the above pair-wise scatter plot.

(1). Both ML and RA are linearly correlated with the response variable MMO. This is what we expected.

(2). ML and RA are not linearly correlated. This indicates that there is no collinearity issue.

(3). We also don’t see any special patterns such as outliers and extremely skewed distribution. There is no
need to perform discretization and regrouping procedures on the predictor variables.

(4). In this data set, there are no categorical variables or categorical variables with a numerical coding system.
There is no need to create dummy variables.

• Initial model

The following initial model includes all predictor variables. The residual plots demonstrate the following
patterns.

(1). One of the observations seems to be an outlier (observation 15);

(2). There is a minor violation of the assumption of constant variance.

(3). There is also a minor violation of the assumption of normality of the distribution of the residuals.
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ini.model = lm(MMO ~ ML + RA, data = DentalData) # fit a linear model with interaction effect
par(mfrow=c(2,2), mar=c(2,3,2,2))
plot(ini.model)
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Next, we will carry the Box-Cox transformation to identify a potential power transformation of the response
variable MMO.
library(MASS)
boxcox(MMO ~ ML + RA,

data = DentalData,
lambda = seq(-1, 1.5, length = 10),
xlab=expression(paste(lambda)))

title(main = "Box-Cox Transformation: 95% CI of lambda",
col.main = "navy", cex.main = 0.9)
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Since both 0 and 1 are in the 95% confidence interval of λ, technically speaking, there is no need to perform the
power transformation. By the optimal λ is closer to 0, we try to perform the log transformation (corresponding
to λ = 0) to see whether there will be some improvement of the initial model
transform.model = lm(log(MMO) ~ ML * RA, data = DentalData)
par(mfrow=c(2,2), mar = c(2,2,2,2))
plot(transform.model)
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The above residual plots indicate an improvement in model fit. We will use the transformed response to build
the final model.

• Final Model

The model based on the log-transformed response is summarized in the following.
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kable(summary(transform.model)$coef, caption = "Summarized statistics of the regression
coefficients of the model with a log-transformed response")

Table 2: Summarized statistics of the regression coefficients of the
model with a log-transformed response

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9957108 1.0023242 1.9910831 0.0553479
ML 0.0124400 0.0104503 1.1903999 0.2429256
RA 0.0296960 0.0293716 1.0110477 0.3198204
ML:RA -0.0000884 0.0003059 -0.2890324 0.7744807

We can see that the interaction effect is insignificant in the model. We drop the highest term in the regression
model either manually or automatically. In the next code chunk, we use the automatic variable selection
method to find the final model.
transform.model = lm(log(MMO)~ML*RA, data = DentalData)
## I will use the automatic variable selection function to search the final model
final.model = step(transform.model, direction = "backward", trace = 0)
kable(summary(final.model)$coef, caption = "Summary statistics of the regression

coefficients of the final model")

Table 3: Summary statistics of the regression coefficients of the
final model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2833535 0.1176375 19.410076 0
ML 0.0094391 0.0011705 8.064482 0
RA 0.0212140 0.0012017 17.653748 0

Now we have three candidate models to select from. We extract the coefficient of determination (R2) of each
of the three candidate models.
r.ini.model = summary(ini.model)$r.squared
r.transfd.model = summary(transform.model)$r.squared
r.final.model = summary(final.model)$r.squared
##
Rsquare = cbind(ini.model = r.ini.model, transfd.model = r.transfd.model,

final.model = r.final.model)
kable(Rsquare, caption="Coefficients of correlation of the three candidate models")

Table 4: Coefficients of correlation of the three candidate models

ini.model transfd.model final.model
0.9204481 0.9257218 0.9255216

The second and the third models have almost the same R2, 92.56% and 92.57%. Both models are based
on the log-transformed MMO. The interpretations of these two models are not straightforward. The initial
model has a slightly lower 92.0%. Since the initial model has a simple structure and is easy to interpret, we
chose the initial model as the final model to report. The summarized statistic is given in the following table.
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summary.ini.model = summary(ini.model)$coef
kable(summary.ini.model, caption = "Summary of the final working model")

Table 5: Summary of the final working model

Estimate Std. Error t value Pr(>|t|)
(Intercept) -31.4247984 6.1474668 -5.111829 1.44e-05
ML 0.4731743 0.0611653 7.735992 0.00e+00
RA 1.0711725 0.0627967 17.057792 0.00e+00

In summary, both ML and RA are statistically significant (p-value ≈ 0) and both are positively correlated to
MMO. Further, for a given angle of rotation of the mandible (RA), when mandibular length (ML) increases
by 1mm, the maximum mouth opening (MMO) increases by 0.473 mm. However, for holding ML, a 1-degree
increase in RA will result in a 1.071 mm increase in MMO.

5.2 Case Study 2
ANOVA model is a special linear regression model in which all predictor variables are categorical. We now
build a linear regression using mussel shell length as the response and the location as the predictor variable
in the following.

Since predictor variable location is a categorical factor variable, R function lm() will automatically define
four dummy variables for each category except for the baseline category is, by default, the smallest character
values (alphabetical order). In our example, the value Magadan is the smallest. Other categories will be
compared with the baseline category through the corresponding dummy variables.

To be more specific, the four dummy variables associated with the four categories will be defined by

1. locationNewport = 1 if the location is Newport, 0 otherwise;

2. locationPetersburg = 1 if the location is Petersburg, 0 otherwise;

3. locationTillamook = 1 if the location is Tillamook, 0 otherwise;

4. locationTvarminne = 1 if the location is Tvarminne, 0 otherwise.
x1 = c(0.0571,0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735, 0.0659, 0.0923, 0.0836)
x2 = c(0.0873,0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835, 0.0725)
x3 = c(0.0974,0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.1050)
x4 = c(0.1033,0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764, 0.0689)
x5 = c(0.0703,0.1026, 0.0956, 0.0973, 0.1039, 0.1045)
len = c(x1, x2, x3, x4, x5) # pool all sub-samples of lengths
location = c(rep("Tillamook", length(x1)),

rep("Newport", length(x2)),
rep("Petersburg", length(x3)),
rep("Magadan", length(x4)),
rep("Tvarminne", length(x5))) # location vector matches the lengths

data.matrix = cbind(len = len, location = location) # data a data table
musseldata = as.data.frame(data.matrix) # data frame
## End of data set creation
##
## Starting building the ANOVA model
anova.model.01 = lm(len ~ location, data = musseldata) # define a model for generating the ANOVA
##
par(mfrow=c(2,2), mar = c(2,2,2,2))
plot(anova.model.01)
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The above residual plots indicate no serious violation of the model assumption. The model that generates the
above residual plot will be used as the final working model. The inference of the regression coefficients is
summarized in the following table.
sum.stats = summary(anova.model.01)$coef
kable(sum.stats, caption = "Summary of the ANOVA model")

Table 6: Summary of the ANOVA model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0780125 0.0044536 17.5168782 0.0000000
locationNewport -0.0032125 0.0062983 -0.5100593 0.6133053
locationPetersburg 0.0254304 0.0065193 3.9007522 0.0004300
locationTillamook 0.0021875 0.0059751 0.3661039 0.7165558
locationTvarminne 0.0176875 0.0068029 2.5999834 0.0136962

From the above summary tale, we can see that P-values associated with location dummy variables location-
Newport, locationTillamook are bigger than 0.05 meaning the means associated with Newport, Tillamook,
and the baseline Magadan (not appearing in the summary table). The p-values associated with Petersburg
and Tvarminn are less the 0.05 which implies that the mean length of these two locations is significantly
different from that of the baseline location Magadan. Further, the coefficient associated with dummy
variable locationPetersburg indicates that the mean length of the mussel shell in Petersburg is 0.0543
units longer than that in the baseline location Magadan. We can also interpret the coefficients associated
with locationTvarminne.
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