Classical Regression
Modeling
To address the practical questions formulated last week, we employ
both linear regression and logistic regression models,
utilizing the analytical dataset created previously. This assignment
builds upon last week’s exploratory data analysis (EDA)
and feature engineering work and will later be combined
with next week’s task on predictive modeling and
cross-validation to form a comprehensive project report.
This assignment focuses on the classical regression analysis.
Linear Regression
Models
Choose a continuous variable as a response to perform a linear
regression analysis. Please use several subsections to organize your
analysis that contain the following components.
Statement of the question(s), the purpose of this analysis:
association analysis or predictive analysis?
Justify whether the data set has sufficient information to
address the question(s)
Model building process: initial model, diagnostics, further
transformations (in addition to the one in the EDA), key performance
metrics of model assessment, and final model selection (based on
appropriate performance metrics). You are expected to
- create a model that contains a few practically important
variables
- create a model that includes additional variables that potentially
influence the response
- use certain variable selection methods to identify the optimal model
(i.e., the final model)
Interpretation of regression coefficients. If you transformed
your response variable, you need to do some algebra to convert the
transformed response variable back to the original scale before you
interpret the regression coefficient.
Summary/discussion/recommendation
You could open a subsection for each bullet point.
Logistic Regression
Analysis
Choose a binary variable as a response to perform a logistic
regression analysis. If your data set does not have a binary categorical
variable that can be used for the logistic regression model, you can
dichotomize a continuous response in a meaningful way
and then build a logistic regression model with the dichotomized
variable.
Please use several subsections to organize your analysis that contain
the following components.
Statement of the question(s), the purpose of this analysis:
association analysis or predictive analysis?
Justify whether the data set has sufficient information to
address the question(s)
Model building process: initial model, diagnostics,
transformation and scaling (in addition to the one in the EDA), key
performance metrics of model assessment, and final model selection
(based on certain performance metrics). For practice, you are expected
to
- create a model that contains a few practically important
variables
- create a model that includes additional variables that potentially
influence the response
- use certain variable selection methods to identify the optimal model
(i.e., the final model)
The interpretation of the final model: interpret the regression
coefficient and applications of the model.
Summary/discussion/recommendation
LS0tDQp0aXRsZTogJ1Byb2plY3QgT25lOiBQYXJ0IElJIC0gUmVncmVzc2lvbiBBbmFseXNpcycNCmF1dGhvcjogIiAoWW91IGFyZSBleHBlY3RlZCB0byBnaXZlIGEgZGVzY3JpcHRpdmUgdGl0bGUpIg0KZGF0ZTogIiAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiA0DQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRvY19jb2xsYXBzZWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHNtb290aF9zY3JvbGw6IHllcw0KICAgIHRoZW1lOiBsdW1lbg0KICB3b3JkX2RvY3VtZW50OiANCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIGZpZ19jYXB0aW9uOiB5ZXMNCiAgICBrZWVwX21kOiB5ZXMNCiAgcGRmX2RvY3VtZW50OiANCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KICAgIGZpZ19jYXB0aW9uOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIGZpZ193aWR0aDogMw0KICAgIGZpZ19oZWlnaHQ6IDMNCmVkaXRvcl9vcHRpb25zOiANCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQ0KLS0tDQoNCg0KYGBge2NzcywgZWNobyA9IEZBTFNFfQ0KZGl2I1RPQyBsaSB7ICAgICAvKiB0YWJsZSBvZiBjb250ZW50ICAqLw0KICAgIGxpc3Qtc3R5bGU6dXBwZXItcm9tYW47DQogICAgYmFja2dyb3VuZC1pbWFnZTpub25lOw0KICAgIGJhY2tncm91bmQtcmVwZWF0Om5vbmU7DQogICAgYmFja2dyb3VuZC1wb3NpdGlvbjowOw0KfQ0KDQpoMS50aXRsZSB7ICAgIC8qIGxldmVsIDEgaGVhZGVyIG9mIHRpdGxlICAqLw0KICBmb250LXNpemU6IDI0cHg7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KICBjb2xvcjogRGFya1JlZDsNCiAgdGV4dC1hbGlnbjogY2VudGVyOw0KfQ0KDQpoNC5hdXRob3IgeyAvKiBIZWFkZXIgNCAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICBmb250LXNpemU6IDE4cHg7DQogIGZvbnQtd2VpZ2h0OiBib2xkOw0KICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgY29sb3I6IERhcmtSZWQ7DQogIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCg0KaDQuZGF0ZSB7IC8qIEhlYWRlciA0IC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogIGZvbnQtc2l6ZTogMThweDsNCiAgZm9udC13ZWlnaHQ6IGJvbGQ7DQogIGZvbnQtZmFtaWx5OiAiVGltZXMgTmV3IFJvbWFuIiwgVGltZXMsIHNlcmlmOw0KICBjb2xvcjogRGFya0JsdWU7DQogIHRleHQtYWxpZ246IGNlbnRlcjsNCn0NCg0KaDEgeyAvKiBIZWFkZXIgMSAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICAgIGZvbnQtc2l6ZTogMjBweDsNCiAgICBmb250LXdlaWdodDogYm9sZDsNCiAgICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgICBjb2xvcjogZGFya3JlZDsNCiAgICB0ZXh0LWFsaWduOiBjZW50ZXI7DQp9DQoNCmgyIHsgLyogSGVhZGVyIDIgLSBhbmQgdGhlIGF1dGhvciBhbmQgZGF0YSBoZWFkZXJzIHVzZSB0aGlzIHRvbyAgKi8NCiAgICBmb250LXNpemU6IDE4cHg7DQogICAgZm9udC13ZWlnaHQ6IGJvbGQ7DQogICAgZm9udC1mYW1pbHk6ICJUaW1lcyBOZXcgUm9tYW4iLCBUaW1lcywgc2VyaWY7DQogICAgY29sb3I6IG5hdnk7DQogICAgdGV4dC1hbGlnbjogbGVmdDsNCn0NCg0KaDMgeyAvKiBIZWFkZXIgMyAtIGFuZCB0aGUgYXV0aG9yIGFuZCBkYXRhIGhlYWRlcnMgdXNlIHRoaXMgdG9vICAqLw0KICAgIGZvbnQtc2l6ZTogMTZweDsNCiAgICBmb250LXdlaWdodDogYm9sZDsNCiAgICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgICBjb2xvcjogbmF2eTsNCiAgICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQpoNCB7IC8qIEhlYWRlciA0IC0gYW5kIHRoZSBhdXRob3IgYW5kIGRhdGEgaGVhZGVycyB1c2UgdGhpcyB0b28gICovDQogICAgZm9udC1zaXplOiAxNHB4Ow0KICBmb250LXdlaWdodDogYm9sZDsNCiAgICBmb250LWZhbWlseTogIlRpbWVzIE5ldyBSb21hbiIsIFRpbWVzLCBzZXJpZjsNCiAgICBjb2xvcjogZGFya3JlZDsNCiAgICB0ZXh0LWFsaWduOiBsZWZ0Ow0KfQ0KDQovKiBBZGQgZG90cyBhZnRlciBudW1iZXJlZCBoZWFkZXJzICovDQouaGVhZGVyLXNlY3Rpb24tbnVtYmVyOjphZnRlciB7DQogIGNvbnRlbnQ6ICIuIjsNCn0NCmBgYA0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCiMgY29kZSBjaHVuayBzcGVjaWZpZXMgd2hldGhlciB0aGUgUiBjb2RlLCB3YXJuaW5ncywgYW5kIG91dHB1dCANCiMgd2lsbCBiZSBpbmNsdWRlZCBpbiB0aGUgb3V0cHV0IGZpbGVzLg0KaWYgKCFyZXF1aXJlKCJrbml0ciIpKSB7DQogICBpbnN0YWxsLnBhY2thZ2VzKCJrbml0ciIpDQogICBsaWJyYXJ5KGtuaXRyKQ0KfQ0KaWYgKCFyZXF1aXJlKCJ0aWR5dmVyc2UiKSkgew0KICAgaW5zdGFsbC5wYWNrYWdlcygidGlkeXZlcnNlIikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KfQ0KaWYgKCFyZXF1aXJlKCJHR2FsbHkiKSkgew0KICAgaW5zdGFsbC5wYWNrYWdlcygiR0dhbGx5IikNCmxpYnJhcnkoR0dhbGx5KQ0KfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFLCAgICAgICAjIGluY2x1ZGUgY29kZSBjaHVuayBpbiB0aGUgb3V0cHV0IGZpbGUNCiAgICAgICAgICAgICAgICAgICAgICB3YXJuaW5nID0gRkFMU0UsICAgIyBzb21ldGltZXMsIHlvdSBjb2RlIG1heSBwcm9kdWNlIHdhcm5pbmcgbWVzc2FnZXMsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgeW91IGNhbiBjaG9vc2UgdG8gaW5jbHVkZSB0aGUgd2FybmluZyBtZXNzYWdlcyBpbg0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHRoZSBvdXRwdXQgZmlsZS4gDQogICAgICAgICAgICAgICAgICAgICAgcmVzdWx0cyA9IFRSVUUsICAgICMgeW91IGNhbiBhbHNvIGRlY2lkZSB3aGV0aGVyIHRvIGluY2x1ZGUgdGhlIG91dHB1dA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIGluIHRoZSBvdXRwdXQgZmlsZS4NCiAgICAgICAgICAgICAgICAgICAgICBtZXNzYWdlID0gRkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgY29tbWVudCA9IE5BDQogICAgICAgICAgICAgICAgICAgICAgKSAgDQpgYGANCg0KDQpcDQoNCg0KIyBDbGFzc2ljYWwgUmVncmVzc2lvbiBNb2RlbGluZw0KDQpUbyBhZGRyZXNzIHRoZSBwcmFjdGljYWwgcXVlc3Rpb25zIGZvcm11bGF0ZWQgbGFzdCB3ZWVrLCB3ZSBlbXBsb3kgKipib3RoKiogbGluZWFyIHJlZ3Jlc3Npb24gYW5kIGxvZ2lzdGljIHJlZ3Jlc3Npb24gbW9kZWxzLCB1dGlsaXppbmcgdGhlIGFuYWx5dGljYWwgZGF0YXNldCBjcmVhdGVkIHByZXZpb3VzbHkuIFRoaXMgYXNzaWdubWVudCBidWlsZHMgdXBvbiAqKmxhc3Qgd2Vla+KAmXMqKiBleHBsb3JhdG9yeSBkYXRhIGFuYWx5c2lzIChFREEpIGFuZCBmZWF0dXJlIGVuZ2luZWVyaW5nIHdvcmsgYW5kIHdpbGwgKipsYXRlcioqIGJlIGNvbWJpbmVkIHdpdGggKipuZXh0IHdlZWvigJlzKiogdGFzayBvbiBwcmVkaWN0aXZlIG1vZGVsaW5nIGFuZCBjcm9zcy12YWxpZGF0aW9uIHRvIGZvcm0gYSBjb21wcmVoZW5zaXZlIHByb2plY3QgcmVwb3J0Lg0KDQpUaGlzIGFzc2lnbm1lbnQgZm9jdXNlcyBvbiB0aGUgY2xhc3NpY2FsIHJlZ3Jlc3Npb24gYW5hbHlzaXMuDQoNCiMgTGluZWFyIFJlZ3Jlc3Npb24gTW9kZWxzDQoNCkNob29zZSBhIGNvbnRpbnVvdXMgdmFyaWFibGUgYXMgYSByZXNwb25zZSB0byBwZXJmb3JtIGEgbGluZWFyIHJlZ3Jlc3Npb24gYW5hbHlzaXMuIFBsZWFzZSB1c2Ugc2V2ZXJhbCBzdWJzZWN0aW9ucyB0byBvcmdhbml6ZSB5b3VyIGFuYWx5c2lzIHRoYXQgY29udGFpbiB0aGUgZm9sbG93aW5nIGNvbXBvbmVudHMuDQoNCiogU3RhdGVtZW50IG9mIHRoZSBxdWVzdGlvbihzKSwgdGhlIHB1cnBvc2Ugb2YgdGhpcyBhbmFseXNpczogYXNzb2NpYXRpb24gYW5hbHlzaXMgb3IgcHJlZGljdGl2ZSBhbmFseXNpcz8NCg0KKiBKdXN0aWZ5IHdoZXRoZXIgdGhlIGRhdGEgc2V0IGhhcyBzdWZmaWNpZW50IGluZm9ybWF0aW9uIHRvIGFkZHJlc3MgdGhlIHF1ZXN0aW9uKHMpDQoNCiogTW9kZWwgYnVpbGRpbmcgcHJvY2VzczogaW5pdGlhbCBtb2RlbCwgZGlhZ25vc3RpY3MsIGZ1cnRoZXIgdHJhbnNmb3JtYXRpb25zIChpbiBhZGRpdGlvbiB0byB0aGUgb25lIGluIHRoZSBFREEpLCBrZXkgcGVyZm9ybWFuY2UgbWV0cmljcyBvZiBtb2RlbCBhc3Nlc3NtZW50LCBhbmQgZmluYWwgbW9kZWwgc2VsZWN0aW9uIChiYXNlZCBvbiBhcHByb3ByaWF0ZSBwZXJmb3JtYW5jZSBtZXRyaWNzKS4gWW91IGFyZSBleHBlY3RlZCB0bw0KICArIGNyZWF0ZSBhIG1vZGVsIHRoYXQgY29udGFpbnMgYSBmZXcgcHJhY3RpY2FsbHkgaW1wb3J0YW50IHZhcmlhYmxlcw0KICArIGNyZWF0ZSBhIG1vZGVsIHRoYXQgaW5jbHVkZXMgYWRkaXRpb25hbCB2YXJpYWJsZXMgdGhhdCBwb3RlbnRpYWxseSBpbmZsdWVuY2UgdGhlIHJlc3BvbnNlDQogICsgdXNlIGNlcnRhaW4gdmFyaWFibGUgc2VsZWN0aW9uIG1ldGhvZHMgdG8gaWRlbnRpZnkgdGhlIG9wdGltYWwgbW9kZWwgKGkuZS4sIHRoZSBmaW5hbCBtb2RlbCkNCiAgDQoqIEludGVycHJldGF0aW9uIG9mIHJlZ3Jlc3Npb24gY29lZmZpY2llbnRzLiBJZiB5b3UgdHJhbnNmb3JtZWQgeW91ciByZXNwb25zZSB2YXJpYWJsZSwgeW91IG5lZWQgdG8gZG8gc29tZSBhbGdlYnJhIHRvIGNvbnZlcnQgdGhlIHRyYW5zZm9ybWVkIHJlc3BvbnNlIHZhcmlhYmxlIGJhY2sgdG8gdGhlIG9yaWdpbmFsIHNjYWxlIGJlZm9yZSB5b3UgaW50ZXJwcmV0IHRoZSByZWdyZXNzaW9uIGNvZWZmaWNpZW50Lg0KDQoqIFN1bW1hcnkvZGlzY3Vzc2lvbi9yZWNvbW1lbmRhdGlvbg0KDQpZb3UgY291bGQgb3BlbiBhIHN1YnNlY3Rpb24gZm9yIGVhY2ggYnVsbGV0IHBvaW50LiANCg0KDQojIExvZ2lzdGljIFJlZ3Jlc3Npb24gQW5hbHlzaXMNCg0KQ2hvb3NlIGEgYmluYXJ5IHZhcmlhYmxlIGFzIGEgcmVzcG9uc2UgdG8gcGVyZm9ybSBhIGxvZ2lzdGljIHJlZ3Jlc3Npb24gYW5hbHlzaXMuIElmIHlvdXIgZGF0YSBzZXQgZG9lcyBub3QgaGF2ZSBhIGJpbmFyeSBjYXRlZ29yaWNhbCB2YXJpYWJsZSB0aGF0IGNhbiBiZSB1c2VkIGZvciB0aGUgbG9naXN0aWMgcmVncmVzc2lvbiBtb2RlbCwgeW91IGNhbiBkaWNob3RvbWl6ZSBhIGNvbnRpbnVvdXMgcmVzcG9uc2UgKippbiBhIG1lYW5pbmdmdWwgd2F5KiogYW5kIHRoZW4gYnVpbGQgYSBsb2dpc3RpYyByZWdyZXNzaW9uIG1vZGVsIHdpdGggdGhlIGRpY2hvdG9taXplZCB2YXJpYWJsZS4NCg0KDQpQbGVhc2UgdXNlIHNldmVyYWwgc3Vic2VjdGlvbnMgdG8gb3JnYW5pemUgeW91ciBhbmFseXNpcyB0aGF0IGNvbnRhaW4gdGhlIGZvbGxvd2luZyBjb21wb25lbnRzLg0KDQoqIFN0YXRlbWVudCBvZiB0aGUgcXVlc3Rpb24ocyksIHRoZSBwdXJwb3NlIG9mIHRoaXMgYW5hbHlzaXM6IGFzc29jaWF0aW9uIGFuYWx5c2lzIG9yIHByZWRpY3RpdmUgYW5hbHlzaXM/DQoNCiogSnVzdGlmeSB3aGV0aGVyIHRoZSBkYXRhIHNldCBoYXMgc3VmZmljaWVudCBpbmZvcm1hdGlvbiB0byBhZGRyZXNzIHRoZSBxdWVzdGlvbihzKQ0KDQoqIE1vZGVsIGJ1aWxkaW5nIHByb2Nlc3M6IGluaXRpYWwgbW9kZWwsIGRpYWdub3N0aWNzLCB0cmFuc2Zvcm1hdGlvbiBhbmQgc2NhbGluZyAoaW4gYWRkaXRpb24gdG8gdGhlIG9uZSBpbiB0aGUgRURBKSwga2V5IHBlcmZvcm1hbmNlIG1ldHJpY3Mgb2YgbW9kZWwgYXNzZXNzbWVudCwgYW5kIGZpbmFsIG1vZGVsIHNlbGVjdGlvbiAoYmFzZWQgb24gY2VydGFpbiBwZXJmb3JtYW5jZSBtZXRyaWNzKS4gRm9yIHByYWN0aWNlLCB5b3UgYXJlIGV4cGVjdGVkIHRvDQogICsgY3JlYXRlIGEgbW9kZWwgdGhhdCBjb250YWlucyBhIGZldyBwcmFjdGljYWxseSBpbXBvcnRhbnQgdmFyaWFibGVzDQogICsgY3JlYXRlIGEgbW9kZWwgdGhhdCBpbmNsdWRlcyBhZGRpdGlvbmFsIHZhcmlhYmxlcyB0aGF0IHBvdGVudGlhbGx5IGluZmx1ZW5jZSB0aGUgcmVzcG9uc2UNCiAgKyB1c2UgY2VydGFpbiB2YXJpYWJsZSBzZWxlY3Rpb24gbWV0aG9kcyB0byBpZGVudGlmeSB0aGUgb3B0aW1hbCBtb2RlbCAoaS5lLiwgdGhlIGZpbmFsIG1vZGVsKQ0KICANCiogVGhlIGludGVycHJldGF0aW9uIG9mIHRoZSBmaW5hbCBtb2RlbDogaW50ZXJwcmV0IHRoZSByZWdyZXNzaW9uIGNvZWZmaWNpZW50IGFuZCBhcHBsaWNhdGlvbnMgb2YgdGhlIG1vZGVsLg0KDQoqIFN1bW1hcnkvZGlzY3Vzc2lvbi9yZWNvbW1lbmRhdGlvbg0KDQoNCg0KDQo=