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1 Introduction

Exploratory Data Analysis (EDA) is a critical process in data science that involves summarizing the main
characteristics of a data set, often with visual methods. The primary purposes of EDA are

Understanding Data Structure: EDA helps you understand the underlying structure of the data, including
its distribution, patterns, and anomalies.

Identifying Relationships: It allows you to identify relationships between variables, which can inform
feature selection and engineering.

Detecting Outliers: EDA helps in detecting outliers or unusual observations that might affect the
performance of your models.

Checking Assumptions: It is used to check the assumptions required for statistical tests and models.

With the identified patterns through EDA, we can select appropriate techniques to extract more hidden
information to improve the performance of the subsequent modeling and related analysis.

In this case study, we use a publicly avaiable data set as an example to perform exploratory data analysis
and detect patterns of the data



2 Description of the Data

A population of women who were at least 21 years old, of Pima Indian heritage, and living near Phoenix,
Arizona, was tested for diabetes according to World Health Organization criteria. The data were collected
by the US National Institute of Diabetes and Digestive and Kidney. The objective of the data set is to
diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements
included in the data set. Several constraints were placed on the selection of these instances from a larger
database.

There are two versions of the data available in the public domain. This case study uses the version that
contains the missing values. The total number of records in this data set is 768. The data set consists of 9
variables including the response variable with the name diabetes. Predictor variables include the number
of pregnancies the patient has had, their BMI, insulin level, age, and so on. A detailed description of the
variables is given below

pregnant: Number of times pregnant

glucose: Plasma glucose concentration 2 hours in an oral glucose tolerance test
pressure: Diastolic blood pressure (mm Hg)

triceps: Triceps skin fold thickness (mm)

insulin: 2-Hour serum insulin (mu U/ml)

mass: Body mass index (weight in kg/(height in m)"2)

pedigree: Diabetes pedigree function

age: Age (years)

diabetes: outcome class variable (‘neg’ or ‘pos’)

A copy of this publicly available data is stored at https://pengdsci.github.io/datasets/PimaDiabetes/Pimal
ndiansDiabetes2.csv.

PimaDiabetes = read.csv("https://pengdsci.github.io/datasets/PimaDiabetes/PimaIndiansDiabetes2.csv") [, -
summary (PimaDiabetes)

pregnant glucose pressure triceps
Min. : 0.000 Min. 1 44.0 Min. 1 24.00 Min. : 7.00
1st Qu.: 1.000 1st Qu.: 99.0 1st Qu.: 64.00 1st Qu.:22.00
Median : 3.000 Median :117.0 Median : 72.00 Median :29.00
Mean 3.845 Mean :121.7 Mean 1 72.41 Mean :29.15
3rd Qu.: 6.000 3rd Qu.:141.0 3rd Qu.: 80.00 3rd Qu.:36.00
Max. :17.000 Max. :199.0 Max. :122.00 Max. :99.00
NA's :5 NA's :35 NA's 1227
insulin mass pedigree age
Min. : 14.00 Min. :18.20 Min. :0.0780 Min. :21.00

1st Qu.: 76.25 1st Qu.:27.50 1st Qu.:0.2437 1st Qu.:24.00
Median :125.00 Median :32.30 Median :0.3725 Median :29.00
Mean :155.55 Mean :32.46 Mean :0.4719 Mean :33.24
3rd Qu.:190.00 3rd Qu.:36.60 3rd Qu.:0.6262 3rd Qu.:41.00
2

Max. :846.00 Max. :67.10 Max. .4200 Max. :81.00
NA's :374 NA's (11

diabetes
Length:768

Class :character
Mode :character


https://pengdsci.github.io/datasets/PimaDiabetes/PimaIndiansDiabetes2.csv
https://pengdsci.github.io/datasets/PimaDiabetes/PimaIndiansDiabetes2.csv

2.1 Handling Missing Value

The above summary table indicates that feature variables glucose, pressure, triceps, insulin, and mass
have missing values. insulin has nearly 50% missing values. triceps has 227 missing values. The other
three variables have a very low percentage of missing values.

2.2 Missing Value vs No Value

Missing value means that the information is available but not collected while no value means that the value
does not exist.

Replacing the missing values with proxy values (imputation) or deleting them from the data are the ways of
handling missing values. Most software programs automatically delete all records with missing components
from the data before modeling if the missing value issue is not handled.

no-value should be never imputed in the data processing. The ways of handling no value is to either drop
all records with no value components or the feature variables that have no values. The former will change
the study population and the latter will lead to a loss of information.

2.3 Glucose Tolerance (glucose) vs 2-Hour Serum Insulin (insulin)

Both fasting insulin test and glucose tolerance test are used in diabetes diagnosis, therefore, vari-
ables glucose and insulin are correlated. Since nearly 50% of patients did not do the insulin test. Therefore,
we can use glucose to impute the missing values in insulin. We first look at the correlation between the
two variables based on the complete data.

par (mfrow = c(1,2))

plot(PimaDiabetes$glucose, PimaDiabetes$insulin, xlab = "Glucose Level", ylab = "Insulin Level")
plot(PimaDiabetes$glucose, log(PimaDiabetes$insulin), xlab = "Glucose Level", ylab = "log Insulin Level
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The scatter plot shows that the logarithm of the insulin level and the glucose level are highly linearly correlated.
We can use this relationship to impute the logarithm of insulin level based on the no-missing glucose level.
Since we will use this data set to build predictive models, the logarithm of insulin will be used directly in the
subsequent models and algorithms.

impute.insulin.lm = 1m(log(insulin[-446]) ~ glucose[-446], data = PimaDiabetes)
summary (impute.insulin.lm)

Call:
Im(formula = log(insulin[-446]) ~ glucose[-446], data = PimaDiabetes)

Residuals:
Min 1Q Median 3Q Max
-1.87469 -0.31478 -0.02521 0.33826 1.55711

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.0588150 0.1095012 27.93 <2e-16 ***
glucose[-446] 0.0143630 0.0008673 16.56 <2e-16 *xxx

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5269 on 390 degrees of freedom
(375 observations deleted due to missingness)
Multiple R-squared: 0.4129, Adjusted R-squared: 0.4114



F-statistic: 274.3 on 1 and 390 DF, p-value: < 2.2e-16

par (mfrow = c(2,2))
plot(impute.insulin.lm)
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Next, we use the following linear regression to impute the missing values in insulin.

glucose = PimaDiabetes$glucose
impute.log.insulin = log(PimaDiabetes$insulin)
n=length(impute.log.insulin)
for (i in 1:n){
if (is.na(impute.log.insulin[i]) == TRUE && is.na(glucose[i]) == FALSE) impute.log.insulin[i] = sum(c
}

Visual comparison of the distribution between the original insulin and the imputed insulin.



den.orig.insulin = density(na.omit(log(PimaDiabetes$insulin)))
den.impute.insulin = density(na.omit(impute.log.insulin))

plot(den.impute.insulin, xlab="log insulin", main = "density curve of log of original and imputed insul
col = "red")
lines(den.orig.insulin, col = "blue")

legend ("topright", c("original log insulin", "inputed log insulin"), col = c("blue", "red"), lty = rep(
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The above density curves show that distributions of the imputed log insulin and original log insulin levels are
close to each other.

PimaDiabetes$impute.log.insulin = impute.log.insulin

2.4 Triceps Skinfold Thickness (triceps) vs Body Mass Index (mass)

Clinical variables triceps (triceps skin-fold thickness, see the following figure to see how it is measured) and
mass (body mass index) are clinically correlated.

triceps has nearly 30% missing values and mass has a few missing values. We can use the information in
mass to impute the missing values in triceps - single imputation with a linear regression model. To perform
imputation,

1. fit a linear regression model with triceps being the response and mass as the predictor.

2. use the above-fitted regression to predict triceps on non-missing mass.



Figure 1: Figure 1. Measurement of triceps skinfold using a Lange caliper. With the subject’s arm in a
relaxed position, the skinfold is picked with thumb and index fingers at the midpoint of the arm.

3. impute the missing value in triceps with the predicted triceps.

Note that in R, records with missing components will be automatically deleted in the modeling process.

impute.lm = 1lm(triceps[-580] ~ mass[-580], data = PimaDiabetes)
summary (impute.lm)

Call:
Im(formula = triceps[-580] ~ mass[-580], data = PimaDiabetes)

Residuals:
Min 1Q Median 3Q Max
-19.6294 -4.9225 -0.4862 5.0930 21.3029

Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) -3.34070 1.56901 -2.129 0.0337 *
mass [-580] 0.98464 0.04669 21.087 <2e-16 ***

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.442 on 536 degrees of freedom
(229 observations deleted due to missingness)

Multiple R-squared: 0.4534, Adjusted R-squared: 0.4524

F-statistic: 444.7 on 1 and 536 DF, p-value: < 2.2e-16

par (mfrow = c(2,2))
plot(impute.lm)
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The above-fitted regression line will be used to impute the missing values in triceps in the following.

mass = PimaDiabetes$mass
impute.triceps = PimaDiabetes$triceps
n=length (impute.triceps)
for (i in 1:n){
if (is.na(impute.triceps[i]) == TRUE && is.na(mass[i]) == FALSE) impute.triceps[i] = sum(coef (impute.
}

PimaDiabetes$impute.triceps = impute.triceps

Next, we check whether the missing values in triceps were appropriately imputed.

We look at the density curves of impute.triceps and the original triceps to see the performance of the
imputation and whether a discretization is needed.



den.tri = density(na.omit(PimaDiabetes$triceps))

den.imput.tri = density(na.omit(PimaDiabetes$impute.triceps))

plot(den.imput.tri, col = "red", xlab = "triceps", ylab = "density", main = "original triceps vs impute
lines(den.tri, col = "blue")

legend("topright", c("Inputed Triceps", "Original Triceps"), col=c("red", "blue"), 1ty =rep(1,2), bty="

original triceps vs imputed triceps
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The above density curves indicate that
e The two distributions are almost identical, and
« both distributions are almost symmetric (except for one outlier in the original data).

Since the missing values in triceps were appropriately imputed, we next add the impute.triceps to the
original data frame and drop the original triceps.

To close this imputation section, we reorganized the data set by dropping the original variables and keeping
the imputed variables. At the same time, we also delete all records with missing components.



n n n

PimaDiabetes = na.omit(PimaDiabetes[, c("pregnant", "glucose", "pressure", "mass", "pedigree", "age" ,"

3 Assess Distributions

This subsection focuses on the potential discretization of continuous variables and grouping sparse categories
of category variables based on their distribution.

3.1 Discretizing Continuous Variables

The above pairwise scatter plot shows that glucose, pressure(diastolic reading), and age are usually
discretized in the clinical study. We will use the clinical standards and practices to discretize these variables

According to Medical News Today (https://www.medicalnewstoday.com/articles/alc-chart-diabetes-
numbers#a-1-c-chart). The glucose levels < 117, [117,137], > 137 indicate normal, pre-diabetes, and
diabetes.

According to the National Diabetes Statistics Report ( https://www.cdc.gov/media/releases/2017/p0718-
diabetes-report.html#:~:text=Rates%200{%20diagnosed %20diabetes %20increased, older %2C%2025%20p
ercent%20had%20diabetes), rates of diagnosed diabetes increased with age. Among adults ages 18-44, 4
percent had diabetes. Among those ages 45-64 years, 17 percent had diabetes. And among those ages 65
years and older, 25 percent had diabetes.

According to The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation,
and Treatment of High Blood Pressure (2003 Guideline, https://www.nhlbi.nih.gov/files/docs/guidelines/exp
ress.pdf), The normal diastolic pressure is less than 80 mm Hg, at risk diastolic reading is between 80 mm
Hg and 90 mm Hg, abnormal (hypertension) diastolic reading is higher than 90 mm Hg.

We will discretize these three variables for future models and algorithms.

PimaDiabetes$grp.glucose <- ifelse(PimaDiabetes$glucose < 117, '(0, 117)',
ifelse(PimaDiabetes$glucose > 137, '> 137', '[117,137]'))

PimaDiabetes$grp.diastolic <- ifelse(PimaDiabetes$pressure < 80, '(0, 80)',
ifelse(PimaDiabetes$pressure > 90, '> 90', '[80,90]'))

PimaDiabetes$grp.age <- ifelse(PimaDiabetes$age <= 44, '[21, 44]',
ifelse(PimaDiabetes$age >= 65, '65+', '[45, 64]'))

3.2 Grouping Sparse Categories

The number of times pregnant pregnant is a discrete numerical variable. We could also consider it as an
ordinal categorical variable.

pregnancy = table(PimaDiabetes$pregnant)
barplot(pregnancy, main = "Distribution of pregnacies", xlab = "Pregnant Times")

10
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There are a few sparse categories in the variable, so we decided to group this variable into the following: 0, 1,
2, 3-4, 5-7, 8+.

PimaDiabetes$grp.pregnant <- ifelse(PimaDiabetes$pregnant == 0, '0O',
ifelse(PimaDiabetes$pregnant == 1, '1',
ifelse(PimaDiabetes$pregnant == 2, '2',
ifelse((PimaDiabetes$pregnant == 3 | PimaDiabetes$pregnant == 4),
ifelse((PimaDiabetes$pregnant == 5 | PimaDiabetes$pregnant ==
ifelse(PimaDiabetes$pregnant >= 8, '8+', "NA"))))))

o~

As the last step, we only keep those variables to be used in the subsequent modeling.

var.names = c("mass", "pedigree", "impute.triceps", "grp.glucose", "grp.diastolic", "grp.age", "grp.pre
PimaDiabetes = PimaDiabetes[, var.names]

3.3 Save Analytic Dataset

The final analytic data should be saved as permanent data for subsequent analysis and modeling and the
saved data set to the GitHub data repository for easy access in the future.

write.csv(PimaDiabetes, "C:\\Users\\75CPENG\\OneDrive - West Chester University of PA\\Desktop\\cpeng\\
The above csv file is also uploaded to the GitHub data repository at https://pengdsci.github.io/STA551 /w0
3/AnalyticPimaDiabetes.csv.

4 Pairwise Association

Depending on the types of variables, there are three different combinations of two variables: two numeric

variables, two categorical variables, one numeric variable, and one categorical variable. We will assess the
association between two variables graphically based on the above three scenarios.

11
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4.1 Two Numeric Variables

The best visual tool for assessing pairwise linear association between two numeric variables is a pair-wise
scatter plot. The pair-wise scatter plot and its variants are available in several different R packages.

ggpairs(PimaDiabetes, # Data frame
columns = 1:4, # Columns
aes(color = diabetes, # Color by group (cat. wvariable)
alpha = 0.5)) # Transparency
mass pedigree impute.triceps grp.glucose
]
Corr: 0.155*** Corr: 0.640%**
0.06 - °
o
o
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n
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The off-diagonal plots and numbers indicate the correlation between the pair-wise numeric variables. As
expected, triceps and mass are significantly correlated. Other paired variables have weak correlations.

The main diagonal stacked density curves show the potential difference in the distribution of the underlying
numeric variable in diabetes and diabetes-free groups. This means that the stacked density curves show
the relation between numeric and categorical variables. These stacked density curves are not completely
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overlapped indicating some correlation between each of these numeric variables and the binary response
variable.

Because of the above interpretation between numeric variables and the binary response variable, we will not
open a new subsection to illustrate the relationship between a numeric variable and a categorical variable.

4.2 Two Categorical Variables

Mosaic plots are convenient to show whether two categorical variables are dependent. In EDA, we are
primarily interested in whether the response (binary in this case) is independent of categorical variables.
Those categorical variables that are independent of the response variable should be excluded from any of the
subsequent models and algorithms.

par (mfrow = c(2,2))

mosaicplot(grp.glucose ~ diabetes, data=PimaDiabetes,col=c("Blue","Red"), main="glucose vs diabetes")
mosaicplot(grp.diastolic ~ diabetes, data=PimaDiabetes,col=c("Blue","Red"), main="diastolic vs diabetes
mosaicplot(grp.age ~ diabetes, data=PimaDiabetes,col=c("Blue","Red"), main="age vs diabetes")
mosaicplot(grp.pregnant ~ diabetes, data=PimaDiabetes,col=c("Blue","Red"), main="pregnant vs diabetes")

13
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The top two mosaic plots demonstrate the positive association between glucose levels and diastolic
readings. The bottom two mosaic plots also show that diabetes is not independent of age and pregnant

times because the proportion of diabetes cases in individual categories is not identical.
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4.3 One Categorical and One Numerical Variable

A box-plot is a type of visual shorthand for measures of position (percentiles) that describe a distribution. It
is also useful for identifying potential outliers. When assessing the relationship between a numerical and a
categorical variable, we look at the distribution of the numerical variable in each category. If the distributions
across the categories are identical, the numerical and the categorical variables are not associated.

For ease of illustration, we only use dianetes status and glucose level in the Pima Indian diabetes data set.

GlucoseDiabetes = na.omit(PimaDiabetes[, c(1,8)])

ggplot(GlucoseDiabetes) +
aes(x = mass, y = diabetes, color = diabetes) +
geom_boxplot() +
ggtitle("PimaIndian Diebetes: diabetes status vs glucose") +
theme (plot.title = element_text(hjust = 0.5),

legend.position="top") +

xlab("diabetes status") +
ylab("glucose level")

Pimalndian Diebetes: diabetes status vs glucose

diabetes neg -III— pos

pos -

glucose level

neg -

20 30 40 50 60
diabetes status

Figure 2: Group box-plots of diabetes status vs glucose

The above group box-plot shows that the distributions of glucose levels of diabetes and diabetes-free sets
are different: means and variances are all different. In addition, the subset of neg (subset of diabetes-free
subjects) as a few outliers.

The next ridge density plot also shows the difference of the two density curves.

ggplot(GlucoseDiabetes, aes(x = mass, y = diabetes, fill = diabetes)) +
geom_density_ridges() +
ggtitle("Diabetes status vs glucose level") +
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theme(plot.title = element_text(hjust = 0.5),
legend.position="top") +

xlab("Diabetes Status") +

ylab("Glucose Level")

Diabetes status vs glucose level

diabetes . neg . pos

pos -

Glucose Level

neg -

20 40 60
Diabetes Status

Figure 3: Ridge plots of diabetes status vs glucose

The ridge plot is a 2D plot but has 3D effect. It is aesthetically pleasant, but could also introduces visual bias
in terms of center of the distributions. We next sketch overlaid density curves with the same horizontal axis.

ggplot(data = GlucoseDiabetes, aes(x = mass, fill = diabetes)) +
geom_density(alpha = 0.3) +
ggtitle("Diabetes Status vs Glucose Level") +
theme(plot.title = element_text(hjust = 0.5),
legend.position="top") +
xlab("Diabetes Status") +
ylab("Glucose Level")
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Diabetes Status vs Glucose Level
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Figure 4: Overlaid density curves of glucose level diabetes levels
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