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Principles and Procedures of Exploratory Data Analysis 

John T. Behrens 
Arizona State University 

Exploratory data analysis (EDA) is a well-established statistical tradition that pro- 
vides conceptual and computational tools for discovering patterns to foster hypoth- 
esis development and refinement. These tools and attitudes complement the use of 
significance and hypothesis tests used in confirmatory data analysis (CDA). Al- 
though EDA complements rather than replaces CDA, use of CDA without EDA is 
seldom warranted. Even when well-specified theories are held, EDA helps one 
interpret the results of CDA and may reveal unexpected or misleading patterns in 
the data. This article introduces the central heuristics and computational tools of 
EDA and contrasts it with CDA and exploratory statistics in general. EDA tech- 
niques are illustrated using previously published psychological data. Changes in 
statistical training and practice are recommended to incorporate these tools. 

The widespread availability of software for graphi- 
cal data analysis and calls for increased use of explor- 
atory data analysis (EDA) on epistemic grounds (e.g. 
Cohen, 1994) have increased the visibility of EDA. 
Nevertheless, few psychologists receive explicit train- 
ing in the beliefs or procedures of this tradition. 
Huberty (1991) remarked that statistical texts are 
likely to give cursory references to common EDA 
techniques such as stem-and-leaf plots, box plots, or 
residual analysis and yet seldom integrate these tech- 
niques throughout a book. A survey of graduate train- 
ing programs in psychology corroborates such an im- 
pression (Aiken, West, Sechrest, & Reno, 1990). In 
this investigation, 37 (20%) of the 186 responding 
departments reported teaching some aspect of EDA in 
introductory graduate courses. However, the percent- 
age of institutions indicating that most or all students 
could apply a learned technique was as follows: (a) 
detection and treatment of influential data, 8%; (b) 
modem graphical display, 15%; (c) data transforma- 
tions, 31%; (d) alternatives to ordinary least squares 
(OLS) regression, 3%. These low levels of competen- 
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cies and the generally bleak picture of methodological 
instruction presented by Aiken et al. (1990) indicate 
that little EDA makes its way into graduate training 
and even less makes its way out as usable skills. 

This essay introduces researchers to the philosoph- 
ical underpinnings and general heuristics of EDA in 
three sections. First, the background, rationale, and 
basic principles of EDA are presented. Next, a primer 
covers heuristics, prototypical beliefs, and procedures 
of EDA using examples from psychological research. 
The final section addresses implications of this analy- 
sis for psychological method and training. 

Background and First Principles 

What Is EDA ? 

Unaware of historical precedent, researchers may 
develop their own definition of EDA from denotations 
of its name. Sometimes the term is used to mean 
exploratory analysis in general. Mulaik (1984), for 
example, discussed a long history of generic "explor- 
atory statistics" in response to an article concerning 
EDA (Good, 1983), and yet scarcely mentioned the 
specific tradition of EDA to be discussed in this essay. 
Sometimes the model-building approach of Box (e.g., 
1980) is considered exploratory, although it relies 
more heavily on probabilistic measures than does 
EDA. 

In this article, EDA refers to a specific tradition of 
data analysis that stems from the work of John Tukey 
and his associates, which dates back to the early 
1960s. This tradition of EDA can be loosely charac- 
terized by (a) an emphasis on the substantive under- 
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standing of data that address the broad question of 
"what is going on here?" (b) an emphasis on graphic 
representations of data; (c) a focus on tentative model 
building and hypothesis generation in an iterative pro- 
cess of model specification, residual analysis, and 
model respecification; (d) use of robust measures, re- 
expression, and subset analysis; and (e) positions of 
skepticism, flexibility, and ecumenism regarding 
which methods to apply. 

The goal of EDA is to discover patterns in data. 
Tukey often likened EDA to detective work. The role 
of the data analyst is to listen to the data in as many 
ways as possible until a plausible "s to ry"  of the data 
is apparent, even if such a description would not be 
borne out in subsequent samples. Finch (1979) as- 
serted that "we  claim for exploratory investigation no 
more than that it is an activity directed toward the 
formation of analogy. The end of it is simply a state- 
ment that the data look as if they could reasonably be 
thought of in such and such a way"  (p. 189). 

Classical works in this tradition are Tukey's Ex- 
ploratory Data Analysis (1977); Mosteller and 
Tukey's Data Analysis and Regression: A Second 
Course in Statistics (1977); Hoaglin, Mosteller, and 
Tukey's studies (1983b, 1985, 1991); volumes three, 
four, and five of Tukey's collected works (Cleveland, 
1988; Jones, 1986a, 1986b); and Velleman and Hoa- 
glin's work (1981, 1992). Summaries of EDA have 
been presented by Hartwig and Dearing (1979), Lein- 
hardt and Leinhardt (1980), Leinhardt and Wasser- 
man (1979), and more recently by Behrens and Smith 
(1996) and Smith and Prentice (1993). Erickson and 
Nosanchuk's (1992) text is for a first course in data 
analysis that presents a balanced presentation of both 
EDA and confirmatory data analysis (CDA). Behrens 
(1996) provided on-line materials for teaching EDA. 
Although exploratory techniques have been devel- 
oped by others, Tukey and his associates began the 
endeavor and continue to lead the articulation of the 
purpose and constraints necessary for reasonable 
EDA (cf. Hoaglin et al., 1991). Tukey (1969) recom- 
mended the EDA approach to psychologists at the 
1968 meeting of the American Psychological Asso- 
ciation in a paper entitled, "Analyzing Data: Sancti- 
fication or Detective Work?" Since that time, surpris- 
ingly few have responded. 

The Need for EDA 

Most psychologists are well trained in testing sta- 
tistical hypotheses at the end of an investigation. Nev- 

ertheless, the scientific process of model building and 
testing often requires learning from the data at all 
stages of research. For example, while conducting a 
regression analysis, one may be interested in assess- 
ing the specific hypothesis that a particular [31 = 0 in 
a model with X 1 and X 2. When assessing the status of 
prespecified statistical issues, the researcher is work- 
ing in what Mayer (1980) called the confirmatory 
mode. More often, however, researchers are con- 
cerned with a broader range of questions about the 
data than the statistical significance of the partialed 
slopes: What if responses on X 2 occurred only at two 
levels rather than across all possible levels of the 
scale? Are there extreme values that unduly affect the 
estimation of the slopes? Is the shape of the data in the 
scatter plot like an ellipse, a horseshoe, or a banana? 
Is there something misleading me? When addressing 
such a broad set of questions, a researcher is working 
in an exploratory mode. Because the goals of the two 
modes of data analysis are different, the modes are 
complementary rather than antagonistic. 

In contrast to EDA, most training in CDA fails to 
address the early and messy stages of data analysis. 
This practice constitutes what McGuire (1989) called 
the hypothesis testing myth. He argued that we do a 
disservice to training and practice by glossing over or 
ignoring preliminary data analyses during which we 
refine hypotheses, evaluate and clarify our auxiliary 
assumptions, and simply make sure our mental model 
of the data is well aligned with reality. 

Exploratory and Confirmatory 

CDA is often likened to Anglo-Saxon jury trials: 
Researchers play the role of prosecutor, data collec- 
tion serves as the trial proceeding, and statistical 
analysis plays the role of jury decision (Kraemer & 
Thiemann, 1987; Tukey, 1977). The detective anal- 
ogy for EDA fits well with this jurisprudence model 
because the role of the detective is to establish pre- 
trial evidence and hunches, the veracity of which 
are tested at the trial. Kraemer and Thiemann pointed 
out that prosecutors examine preliminary evidence 
before deciding whether to prosecute or not. They 
equate this process with EDA and other pretrial 
evidence gathering such as power- or meta-analysis. 
By using both exploratory and confirmatory tech- 
niques, a data analyst collects complete pretrial evi- 
dence and brings the full weight of CDA to bear at 
the trial. 

In a trial, rules of presenting and evaluating evi- 
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dence are as well established as the rules of statistical 
inference. To make the strong claim of innocence or 
guilt (significance or nonsignificance), one uses spe- 
cific rules and procedures with strict interpretations of 
the data. In EDA, the goal is not to draw conclusions 
regarding guilt and innocence but rather to investigate 
the actors, generate hunches, and provide preliminary 
evidence. EDA is more like an interrogation in which 
clean and corrupted stories are told, whereas CDA is 
testimony regarding evidence that fits carefully laid- 
out trial procedures. The goal of EDA is indictment; 
the goal of CDA is conviction (Behrens & Smith, 
1996). 

There is, however, a point at which the trial analogy 
breaks down. In a jury trial a witness may be used to 
both formulate and test hunches. Alternatively, in sci- 
entific practice different data must be used for model 
formulation (EDA) and testing (CDA). Failure to rec- 
ognize this important fact will lead to inflation of 
Type I error and overfitting. Along these lines Giere 
(1984, cited in Howson & Urbach, 1993) argued: 

If the known facts were used in constructing the model 
and were thus built into the resulting hypothesis.., then 
the fit between these facts and the hypothesis provides 
no evidence that the hypothesis is true [since] these facts 
had no chance of refuting the hypothesis. (p. 408) 

When sufficiently large samples are available, the ex- 
ploratory data analyst is likely to conduct EDA on one 
data set to generate hypotheses and assess the model 
on another. The importance of distinguishing between 
model building and testing led Mosteller and Tukey 
(1977) to state that "we  plan to cross-validate care- 
fully wherever we can"  (p. 40). Cross-validation 
means that when patterns are discovered, they are 
considered provisional (consistent with the EDA 
mode) until their presence is tested in different data. 

Tukey (1972/1986b) discussed data analysis as a 
continuum from EDA to CDA. Between the two is 
an intermediate mode called rough confirmatory 
analysis. In EDA the researcher entertains numerous 
hypotheses, looks for patterns, and suggests hypo- 
theses based on the data, with or without theoretical 
grounding. Working in this mode, the researcher 
begins to delineate a set of plausible models and 
seeks rich descriptions of the data. In rough CDA, 
the researcher undertakes initial assessment of the 
plausible models using probabilistic approaches such 
as confidence intervals or significance tests (cf. Be- 
hrens & Smith, 1996). In this step the researcher an- 
swers the question, "With what accuracy are the ap- 

pearances already found to be believed?" (Tukey, 
1972/1986b, p. 760). In the confirmatory mode, re- 
searchers work to test specific hypotheses using a 
strict probabilistic framework following a decision 
theoretic approach. 

When trained in all three modes of data analysis, a 
researcher is likely to move fluidly between modes 
and work in multiple modes on the same problem. For 
example, a researcher may have strict hypotheses 
about main effects in a factorial analysis of variance 
(ANOVA) and yet have no hypotheses concerning 
possible interactions. Working in a strict confirmatory 
mode, the researcher would compute only the main 
effects test and ignore possible interactions. Working 
in multiple modes, a researcher would likewise state 
the hypothesis for main effects and test them using 
strict CDA. At the same time, however, the researcher 
working in multiple modes would explore possible 
interactions with statistical graphics, resistant sum- 
mary statistics, and even loosely interpreted signifi- 
cance tests. Patterns of unexpected outcomes would 
be regarded as starting points for hypothesis genera- 
tion and future testing rather than as statistical con- 
clusions. In addition, the researcher familiar with 
EDA will also explore data patterns associated with 
the hypothesized main effect to make sure the CDA 
was not misled by unrecognized patterns that can lead 
to conclusions inconsistent with the data. 

Tukey summarized the relation between these 
modes of data analysis, arguing "(a) both exploration 
and confirmation are important, (b) exploration comes 
first, (c) any given study can, and usually should, 
combine bo th"  (Tukey, 1980/1986e, p. 822; cf. 
Tukey, 1980). Tukey (1982/1986d) presented a more 
detailed analysis of levels and types of data analysis 
following this framework. JiSreskog and SiSrbom 
(1993) presented a similar discussion of situations of 
(a) model generating, (b) analysis of competing mod- 
els, and (c) strictly confirmatory analysis of a single 
model, all in the context of structural equation mod- 
eling (p. 115). 

Researchers who want to know more about their 
data than they have hypothesized sometimes use con- 
firmatory methods while working in a pseudoconfir- 
matory mode. Examples of this kind of behavior in- 
clude interpreting unexpected interactions as if 
hypothesized and computing t tests or chi-square ho- 
mogeneity tests on myriad possibilities. This is not 
EDA. In these cases, researchers have exploratory 
goals but are approaching them by using confirmatory 
tools, assumptions, and conclusions improperly. EDA 
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helps avoid these improper approaches by being clear 
about hypothesis specificity and conclusion strength 
and by providing a language for different stages and 
purposes of data analysis. 

EDA and Other Exploratory Methods 

Although holding exploratory goals alone does not 
necessarily imply EDA, use of exploratory procedures 
such as the plotting of simple summaries or the tabu- 
lation of simple descriptive statistics does not neces- 
sarily imply EDA either. In many cases, simple de- 
scriptive statistics or plots may hide important 
patterns as much as they reveal others. 

Exploratory statistics is an interesting point of 
convergence between classical CDA and EDA. A 
number of apparently confirmatory techniques are 
exploratory in their goals, including stepwise regres- 
sion, some forms of factor analysis, cluster analysis, 
discriminant analysis, and many applications of 
structural equation modeling. These and other meth- 
ods are exploratory when the researcher is trying to 
determine a "bes t "  set of variables or the "bes t "  
model for a sample rather than testing a prespecified 
model for a specific population. For example, so- 
called confirmatory factor analysis via structural 
equation models becomes exploratory when a number 
of alternate models are assessed. The exploratory na- 
ture of these techniques underscores the idea that data 
exploration and the integration of empirical and theo- 
retical knowledge are well-established aspects of sci- 
entific psychology. 

Given that EDA is not simply a set of techniques 
but an attitude toward the data (Tukey, 1977), are 
researchers conducting EDA when they compute ex- 
ploratory factor analysis or other exploratory statis- 
tics? The answer depends on how the analysis is con- 
ducted. A researcher may conduct an exploratory 
factor analysis without examining the data for pos- 
sible rogue values, outliers, or anomalies; fail to plot 
the multivariate data to ensure the data avoid patho- 
logical patterns; and leave all decision making up to 
the default computer settings. Such activity would not 
be considered EDA because the researcher may be 
easily misled by many aspects of the data or the com- 
puter package. Any description that would come from 
the factor analysis itself would rest on too many un- 
assessed assumptions to leave the exploratory data 
analyst comfortable. Henderson and Velleman (1981) 
demonstrated how an interactive (EDA based) ap- 
proach to stepwise regression can lead to markedly 
different results than would be obtained by automated 
variable selection. This occurs because the researcher 
plots the data and residuals at each stage and thereby 
considers numerous patterns in the data while the 
computer program is blind to all aspects of the data 
except the R 2. 

Summary 

EDA emphasizes that at different stages of research 
there are different types of questions, different levels 
of hypothesis specificity used, and different levels of 
conclusion specificity that are warranted. EDA does 
not call for the abandonment of CDA but rather for 
the broadening of data analysis to incorporate a wide 
range of attitudes and techniques appropriate to the 
different stages and questions in scientific work. At 
the same time, EDA is seen as indispensable in any 
investigation: "Exploratory data analysis can never 
be the whole story, but nothing else can serve as 
the foundation stone--as the first step" (Tukey, 1977, 
p. 3). 

Beliefs, Heuristics,  and Trademarks  

Although Tukey often argues that EDA is an atti- 
tude rather than a set of tools, a number of heuristics 
have been devised for EDA. To find patterns, reveal 
structure, and make tentative model assessments, 
EDA emphasizes the use of graphics and the process 
of iterative model fit and residual analysis. To avoid 
being fooled by unwarranted assumptions about the 
data, EDA is a much more data-driven approach to 
data analysis than CDA. Because a complete catalog- 
ing of techniques is beyond the scope of this article, 
this section discusses major themes of EDA and 
presents examples. 

It cannot be overemphasized that an appropriate 
technique for EDA is determined not by computation 
but rather by a procedure's purpose and use. Whether 
residuals are obtained from a computer program in- 
tended for CDA or EDA is not important. What is 
important is to obtain a rich description of the data 
and to understand the relationship between the model 
and patterns of residuals. The techniques described 
next have been helpful in EDA, but techniques are 
secondary to the goal of building rich mental models 
of the data. The reader may note that the procedures 
described are highly related, not simply a laundry list. 
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Each aspect of EDA is used in concert with other 
aspects so that a single isolated procedure is seldom 
used. Recommendations presented here are not nec- 
essarily unique to EDA. What is unique is the con- 
figuration of beliefs and procedures. 

Understand the Context 

To some, the analogy of the data analyst as detec- 
tive connotes someone entering an unknown arena 
and cleverly finding patterns that may or may not 
reflect " t rue"  effects. This connotation has led some 
to characterize EDA as naive empiricism gone amok 
(MacDonald, 1983). This description is inappropriate 
for both a detective and someone conducting data 
analysis in an exploratory mode. 

EDA shares a view of the interaction of prior 
knowledge and data analysis similar to the postposi- 
tivist position put forward by Donald Campbell. 
Campbell (1988) argued that quantitative knowing is 
dependent on qualitative knowing. This view holds 
that, in quantitative data analysis, numbers map onto 
aspects of reality. Numbers themselves are meaning- 
less unless the data analyst understands the mapping 
process and the nexus of theory and categorization in 
which objects under study are conceptualized. This 
approach closely matches Tukey's concern about ster- 
ilized, decontextualized approaches to data analysis. 
In his satirical list of "badmandments ,"  Tukey 
(1986a) chided, "Never tell your statistical consultant 
about the two most important recent papers in the 
field of your own RESEARCH" (p. 205, emphasis in 
the original). Similarly, Tukey (1979) argued that sub- 
stantive concerns must take precedence over statisti- 
cal convenience. 

Data analysts working in either a confirmatory or 
exploratory mode are sometimes considered techni- 
cians who provide recipes for "number crunching." 
Countering this characterization, Tukey and others 
(Bode, Mosteller, Tukey, & Winsor, 1986) suggested 
the training of scientific generalists. They pointed out 
that "statistics, as the doctrine of planning experi- 
ments and observations and of interpreting data, has a 
common relation to all sciences" (p. 3). They con- 
cluded that the complexity of science requires training 
of generalists with broad depth and experience in ar- 
eas such as economics, psychology, and natural sci- 
ences. Boring (1919) expressed similar sentiments 
when he wrote that "statistical ability, divorced from 
a scientific intimacy with the fundamental observa- 
tions, leads nowhere" (p. 332). 

Use Graphic Representations of  Data 

Graphical analysis is central to EDA. Tukey (1977) 
summed up the role of graphics in EDA by saying that 
"the greatest value of a picture is when it forces us to 
notice what we never expected to see" (p. vi). Graphi- 
cal summaries are almost universally sought to aug- 
ment algebraic summaries because graphics can por- 
tray numerous data values simultaneously, while 
algebraic summaries often sum over important attri- 
butes of the data or fail to suggest important patterns. 
For example, Cleveland (1985, reprinted in Behrens 
& Smith, 1996) provided the data in Table 1, which 
relates the average intelligence quotient for fathers 
and sons at each level of a number of social classes as 
reported by Burt (1961). Although the general posi- 
tive trend is evident in the table, the plot of the data in 
Figure 1 shows that the function underlying these data 
is so straight that it calls the veracity of the data into 
question. Even this simple plot is striking because it 
serves Tukey's function of showing what we did not 
expect. For an exploratory data analyst, graphical rep- 
resentation is the primary language. 

Classical references in the area of statistical graph- 
ics include Bertin (1983); Chambers, Cleveland, 
Kleiner, and Tukey (1983); Cleveland (1985, 1993); 
Cleveland and McGill (1988); Wainer and Thissen 
(1981, 1993); and Tufte (1983, 1990). Cook and 
Weisberg (1994) presented a comprehensive treat- 
ment of graphics for regression analysis. 

Tukey (1977) developed a number of graphical de- 
vices used by exploratory analysts that are gaining 
widespread use because of their incorporation in com- 
mon statistical packages. For example, Figure 2 is a 
stem-and-leaf plot of effect sizes from studies exam- 
ining sex differences reported by Feingold (1994). In 
this meta-analysis, negative effect sizes indicate stud- 
ies in which males have average scores lower than 

Table 1 
Intelligence Quotient (IQ) Data Provided by Burr (1961) 

Social class Adult mean IQ Child mean IQ 

Higher professional 139.7 120.8 
Lower professional 130.6 114.7 
Clerical 115.9 107.8 
Skilled 108.2 104.6 
Semiskilled 97.8 98.9 
Unskilled 84.9 92.6 

Note. From The Elements of Graphing Data (p. 97), by W. S. 
Cleveland, 1985, Monterey, CA: Wadsworth. Copyright 1985 by 
W. S. Cleveland. Reprinted with permission. 
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Figure 1. Plot of average intelligence quotient (IQ) for 
sons versus average IQ for fathers across different social 
classes. Original data are from Burt (1961), and the original 
plot is from The Elements of Graphing Data (p. 98), by 
W. S. Cleveland, 1985, Monterey, CA: Wadsworth. Copy- 
right 1985 by W. S. Cleveland. Reprinted with permission. 

females, and positive effect sizes indicate studies in 
which males have higher average scores than females. 
Meta-analytic studies are especially well suited for 
EDA because the small number of effects and vari- 
ability in sample sizes can lead to wild imbalances in 
the influence of individual observations. The proce- 
dures for sensitivity analysis (Greenhouse & Iyengar, 

Figure 2. 
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examining differences in anxiety across sexes as reported by 
Feingold (1994). 

1994) and visual analysis (Light, Singer, & Willett, 
1994) of meta-analytic data described in The Hand- 
book of Research Synthesis (Cooper & Hedges, 1994) 
rely extensively, and explicitly, on EDA. 

The stem-and-leaf plot shown in Figure 2 repre- 
sents a type of frequency table organized graphically 
to resemble a histogram while retaining information 
about the exact value of each observation. The left 
side of the plot are the " s tems"  that mark intervals or 
bins; the right side of the plot contains " leaves,"  
which represent the detail of numbers occurring in 
each bin. In this case the numbers on the left-hand 
side of the plot indicate the 10ths place value of effect 
sizes from the study, and those on the right indicate 
the 100ths place that occur in each bin. In this way the 
plot indicates that the smallest effect sizes are -0.64 
and -0.54 whereas the largest is 0.30. The alignment 
of the numbers allows a quick sense of frequency and 
distribution shape, and close examination of indi- 
vidual values (the leaves) provides additional infor- 
mation about distributions within each bin. Stem-and- 
leaf plots will vary in appearance according to the 
number of bins used. In this case, as in all cases of 
graphic analysis, there is no single "plot of the data" 
but rather only one of many possible plots. When a 
large number of data points are examined, the stem- 
and-leaf plot may become cumbersome. 

A dot plot can be an effective tool to examine a 
single distribution or compare a number of distribu- 
tions. Figure 3 is a dot plot of effect sizes character- 
izing the differences between males and females 
across four personality traits from Feingold (1994). 
Each dot in the display represents the value of one 
observation. The general pattern is clear. Overall, 
males tend to be less anxious than females, are gen- 
erally more assertive, and have higher locus of control 
and self-esteem scores. Great variability across these 
measures and an obvious high outlier for assertiveness 
are also easy to detect. 

In the early stages of data analysis, it is often pref- 
erable to plot data directly because summaries may 
hide data or distort one's visual impression of data. 
This maxim, however, needs to be balanced against 
the need for multiplicity of graphic summaries and the 
need for parsimonious representation of numerous 
data points (Yu & Behrens, 1995). When seeking ad- 
ditional structure in univariate distributions or when a 
number of distributions need to be compared, a box 
plot is often used. This is a shortened name for the 
original box-and-whisker plot. Although box plots 
come in many varieties (see Frigge, Hoaglin, & Ig- 
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Figure 3. Dot plot of sex difference effect sizes for different affective and cognitive vari- 
ables reported by Feingold (1994). 

lewicz, 1989), a common form is shown in Figure 4, 
which portrays the data from Figure 3. The box plot 
offers a five-number summary in schematic form. The 
ends of a box mark the first and third quartiles, and 
the median is indicated with a line positioned within 
the boxJ The ranges of most or all of the data in the 
tails of the distribution are marked using lines extend- 
ing away from the box, creating "whiskers"  or 
"tai ls ."  Rules governing the construction of the whis- 
kers vary. One method suggested by Tukey (1977) 
was to extend the whisker to the most extreme value, 
not exceeding a distance of 1.5 times the interquartile 
spread (interquartile spread is the scale value of the 
75th percentile minus the value at the 25th percentile). 
In this scheme the tails will cover the middle 99.3% of 
a Gaussian distribution. Data values occurring past 
this point are typically displayed individually, as 
shown in Figure 4. 

Comparing the boxplot to the dotplot, one can 
see that the box plot offers information about the lo- 
cation of key elements in the distribution (including 
outliers) and omits more subtle details. The sum- 
marizing function of this plot is especially useful 
when a number of distributions are being compared. 
Other forms of the boxplot have been developed to 
indicate the confidence interval of the median by 
shading the center of the box or indenting the box 
along the length of the interval (cf. McGill, Tukey, 
& Larsen, 1978). Other modifications superimpose 
dots over the boxes (Berk, 1994) or alter the appear- 
ance of the box (Stock & Behrens, 1991). Emerson 

and Strenio (1983) presented a complete treatment of 
basic boxplot design. 

Kernel density smoothers are graphic devices that 
provide estimates of a population shape, as seen in 
Figure 5. This smooth shape is arrived at by taking the 
relative frequency of data at each x value and aver- 
aging it with that of the surrounding data (Scott, 
1992). Figure 5 is a kernel density smooth of the 
Feingold anxiety data depicted in Figures 3 and 4. 
What is clear from this graphic is the near bimodality 
of the data that is hidden in the boxplot and not ob- 
vious in the dotplot. By varying the type of averaging 
across the data at each point, the size of the window 
of averaging, or the weighting function used around 
each point, the appearance of the plot can be varied to 
make the plot appear more jagged or more smooth. 
Overlaying density functions from each distribution 
allows direct comparison of their shapes, as shown in 
Figure 6. From this we can see that the underlying 
distributions are quite similar, with the exception of 
the second mode of the anxiety distribution. Further 
analysis of these data is warranted to ascertain wheth- 
er there are unique study characteristics associated 
with this group. This example underscores the impor- 
tance of multiple depictions of data and the impor- 

1 More precisely, the key elements of the box plot are 
based on statistics that Tukey called "hinges." These are 
robust measures that generally match the quartiles, although 
slight differences may occur in some cases. See Frigge et al. 
(1989) for a discussion of these issues. 
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Figure 4. Box plot of effect sizes displayed in Figure 3. Data in the tails of the distribution 
are marked using lines extending away from the box. The O indicates outliers that deserve 
special attention. 

tance of rejecting the notion of "the plot" of a set of 
data. Scott (1992) provided a full treatment of uni- 
variate and multivariate density-smoothing functions. 

A major component of the detective work of EDA 
is the rough assessment of hunches, a quick look at 
the question "could it be t h a t . . . "  or "what if it is the 
case that . . . .  " As Tukey and Wilk (1986) argued, 
citing Chamberlain (1965), "science is the holding of 
multiple working hypotheses." To hold and assess 
multiple working hypotheses, data analysts depend 
heavily on interactive computer graphics. Interactive 
graphics can be acted on directly by touching them 
with the cursor or other pointing device. Another im- 
portant innovation, linked plots, are organized so that 
a change made to the color or shape of a point repre- 
senting an observation in one plot automatically changes 
the appearance of the observation in all other plots. 

In the case of the Feingold data, interactive graph- 
ics allow the selection of the observations in the 
second mode of the anxiety effect size data by draw- 
ing a rectangle around the observations of interest. 
When this is done, the observations are highlighted 
in all the linked windows. To determine whether 
there is a common effect in these data based on the 
country in which the study occurred, a plot of the 
data organized by country is opened. Figure 7 is an 
illustration of how linking the two plots allows quick 
determination of covariation across variables. This 
figure is a picture of a computer screen obtained 
using Data Desk (Data Description, Inc., 1995), al- 
though linking is common in most EDA-oriented 

programs. The small window on top of the dot plot 
is a palette that allows rapid change of observation 
shape by selecting observations and pointing to the 
desired shape. The highlighted portions of the bar 
chart reflect the highlighted (second mode) por- 
tions of the dot plot. Of the nine highlighted obser- 
vations, three are from the United States and two 
each are from Israel, Canada, and Sweden. All of 
the positive effect sizes are from studies conducted 
in the United States, suggesting the possibility of 
country-related effects. These data are limited in size 
but are consistent with the tentative hypothesis that 
sex differences in reported anxiety vary as a func- 
tion of country of origin. Such an idea provides di- 
rection for conducting evaluations of other data sets and 
for conducting cross-cultural studies in the future. 

Because it is impossible to anticipate all relevant 
aspects of data in either experimental or nonexperi- 
mental work, it is difficult to overstate the value of 
graphics. The multiplicity of data patterns that can 
match a single mean led early psychologists to con- 
sistently report means with histograms. Changes from 
this convention were heatedly discussed. By 1935, an 
editorial in Comparative Psychology (Dunlap, 1935) 
asked, " . . .  Should we not exclude reports in which 
the group averages of performance are presented 
without interpretive distributions?" (p. 3). Even the 
staunchest proponents of CDA argued for balance in 
exploratory and confirmatory methods. Fisher's Sta- 
tistical Methods for Research Workers (1925) included 
an entire chapter on "diagrams" that begins noting: 
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Figure 5. Density estimation plot of the anxiety effect size data indicating bimodality in the 
anxiety measures. 

The preliminary examination of most data is facilitated 
by the use of diagrams. Diagrams prove nothing, but 
bring outstanding features readily to the eye; they axe 
therefore no substitute for such critical tests as may be 
applied to the data, but are valuable in suggesting such 
tests, and in explaining the conclusions founded upon 
them. (p. 24 of the 1 lth edition) 

Develop Models in an Iterative Process of  
Tentative Model Specification and 
Residual Assessment 

When working in the exploratory mode, the data 
analyst takes the goal of  developing a plausible de- 

scription of  the data using the framework: data = fit 
+ residual. Fol lowing a graphical analogy it is some- 
times said that data = smooth + rough. 

These formulas reflect the fact that the aim of  
data analysis is to fit or summarize the data and that 
all description fails to some degree as reflected in 
the residuals. Even the use of  the mean or median 
is a fit in this view. The boxplot is valuable because 
it indicates both the fit and residual of  a single set 
of  data. The fit is the median or mean, single values 
that descr ibe  the data well.  Residuals  are devia-  
tions from that point. The singling out of  outliers is 
part of  the important process of  identifying observa- 
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tions that are very poorly described by summary sta- 
tistics. 

To create quantitative descriptions of data, the ex- 
ploratory data analyst conducts an iterative process of 
suggesting a tentative model, examining residuals 
from the model to assess model adequacy, and modi- 
fying the model in view of the residual analysis. This 
occurs in a cyclical process that should lead the ana- 
lyst, by successive approximation, toward a good de- 
scription. This process was inherent in the examina- 
tion of the meta-analysis data discussed previously. A 
single-mode model of the anxiety data was assumed 
as a starting point, but graphical analysis of residuals 
(data around the second mode) suggested that such a 
fit would hide important structure. 

Although most psychologists are familiar with 
residual analysis from the regression literature, 
workers in EDA extend this framework to conceptu- 
alize all model development (Goodall, 1983a). 
Consider, for example, the data presented in Table 2 
from Lauver and Jones (1991). These authors ex- 
tended previous work in career-self-efficacy theory 
following Lent and Hackett (1987), who noted 
the need to collect occupational preference data 
from ethnically diverse groups. Lauver and Jones 
conducted a typical analysis consisting of a series 
of chi-square tests of homogeneity across ethnici- 
ties at each level of occupation. This approach ig- 
nores the effect of career differences, inflates Type I 
error, and does not address the possibility of inter- 
actions in addition to main effect. After finding 
occupations with "significant" differences, Lauver 
and Jones noted the ethnicity with the highest 

Table 2 
Percentage of Respondents Perceiving Each Career as 
an Option by Ethnicity as Reported by Lauver and 
Jones (1991) 

Ethnicity 

Native Hispanic White 
Occupation American % % % 

X-ray technician 28 23 19 
Medical technician 35 40 34 
Physical therapist 37 40 41 
Social worker 64 56 54 
Bookkeeper 47 38 37 
Secretary 52 56 48 
Fashion shop manager 47 56 45 
Receptionist 35 47 41 
Librarian 36 23 18 
Electrician 49 47 42 
Electronics technician 54 51 43 
Veterinarian 34 38 55 
Probation officer 58 40 29 
Armed forces 76 71 62 
Accountant 47 51 49 
Lawyer 63 68 62 
Auto salesperson 34 33 26 
Photographer 66 65 67 

percentage of students considering that career an 
option. This overlooks the pattern of differences 
across the ethnicities and fails to build a descrip- 
tive model of the structure of the data. Because 
this type of data was being published for the first 
time, a rich description of the structure of the 
data from an exploratory view would have been 
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preferred. After these and other data have been 
published and specific hypotheses generated, more 
confirmatory approaches may be appropriate. 

Bui ld ing  a T w o - W a y  F i t  

To build a tentative model of the two dimensions of 
the table, one may apply the fit-plus-residual frame- 
work iteratively in both dimensions to form a two- 
way fit. In this approach, each value in the table is 
modeled as the sum of ethnicity, occupation, and 
overall effects. First, a tentative fit or description of 
the level of options seen in each ethnicity is found by 
calculating the median percentage of options in each 
column. This provides fits of 47, 47, and 42.5 for the 
Native American, Hispanic, and White groups, re- 
spectively. After this first step, unexpected patterns 
begin to appear: On average, fewer White students 
rate occupations as options than their Native Ameri- 
can or Hispanic counterparts. To complete the initial 
pass at decomposing data into fit and residual, residu- 
als are computed by subtracting each data value from 
the median value for the corresponding ethnicity. The 
bottom of Table 3 displays fits for each ethnicity with 

Table 3 

Residual Percentage of  Individuals Viewing Each Career 
as an Option After a First Pass at Removing the 
Ethnicity Fit 

Ethnicity 

Native 
Occupation American Hispanic White 

X-ray technician -19 -24 -23.5 
Medical technician -12 -7 -8.5 
Physical therapist -10 -7 -1.5 
Social worker 17 9 11.5 
Bookkeeper 0 -9 -5.5 
Secretary 5 9 5.5 
Fashion shop manager 0 9 2.5 
Receptionist - 12 0 - 1.5 

Librarian -11 -24 -24.5 
Electrician 2 0 -0.5 
Electronics technician 7 4 0.5 
Veterinarian -13 -9 12.5 
Probation officer 11 -7 -13.5 
Armed forces 29 24 19.5 
Accountant 0 4 6.5 
Lawyer 16 21 19.5 
Auto salesperson -13 -14 -16.5 
Photographer 19 18 24.5 

Ethnicity fits 47 47 42.5 

residuals in the center. Each fit plus residual equals 
the original cell data. 

Having subtracted out the ethnicity effects from the 
rows, patterns of occupation-related effects begin to 
emerge in the residuals. An occupation's residuals 
reflect how different it is from the median occupation 
within each ethnicity. Negative numbers indicate low- 
option occupations and positive residuals indicate 
high-option occupations. X-ray technician, librarian, 
and auto salesperson stand out as low-option profes- 
sions. The armed forces leads as a high-option pro- 
fession. 

To model the values associated with these occu- 
pation effects, the two-way fit continues by calcu- 
lating the median residual for each occupation. This 
provides a summary of the occupation effects, simi- 
lar in form to the initial summary of the ethnicity 
effects. Next, cell values from Table 3 are subtracted 
from the occupation medians, allowing each cell of 
the original table to be recreated by adding the occu- 
pation and ethnicity fits to the residual. This process 
is then extended to find an overall fit by fitting the 
ethnicity and occupation fits. After these fits have 
been obtained, the process is repeated by iteratively 
refitting the residuals in each direction of the table 
until additional patterns cannot be extracted (Tukey, 
1977). 

The final results of such an analysis are presented 
in Table 4, with occupations reordered by the size of 
their fits. Each datum in the original table can be 
recreated by adding the overall, ethnicity, and occu- 
pation fits to the residual. When the overall, occupa- 
tion, and ethnicity fits are perfectly additive, residuals 
equal zero. Residuals indicate interaction effects over 
and above the main effects modeled in the ethnicity 
and occupation fits. For example, 29% of the White 
respondents consider work as a probation officer an 
option. This is nine percentage points less than the 
predicted value of 38 obtained by adding the overall 
fit (45) plus the White fit (-2) plus the probation 
officer fit (-5). In contrast, the Native American 
group considers this occupation as an option 17% 
more often than one would expect given the overall fit 
(45), the Native American fit (+1), and the probation 
officer fit (-5). 

The use of residuals in EDA differs from that in 
CDA in several ways. First, although the logic of 
reducing residuals by use of an improved model is 
inherent in ANOVA and regression, it is seldom dis- 
cussed explicitly outside of model comparison ap- 
proaches to these techniques (e.g., Maxwell  & 
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Table 4 
Additive Occupation and Ethnicity Fits With Residuals and Overall Fit From 
Median Smoothing of Table 2 

Residuals by ethnicity 

Native Occupation 
Occupation American H i span ic  White fits 

Armed forces 4 0 -7 26 
Photographer 0 0 4 20 
Lawyer -2 4 0 19 
Social worker 7 0 0 11 
Secretary 0 5 -1 6 
Accountant -5 0 0 6 
Electronics technician 2 0 -6 6 
Electrician 1 0 -3 2 
Fashion shop manager -1 9 0 2 
Receptionist -9 4 0 -2 
Probation officer 17 9 -9 -5 
Physical therapist -4 0 3 -5 
Bookkeeper 7 -1 0 -6 
Veterinarian -5 0 19 -7 
Medical technician -2 4 0 -9 
Auto salesperson 0 0 -5 -12 
Librarian 12 0 -3 -22 
X-ray technician 4 0 -2 -22 

Ethnicity fits 1 0 -2 45 
(Overall fit) 

Note. Rows are reordered by size of fit. 

Delaney, 1990). Second, CDA generally assesses the 
size of residuals in global summary statistics such as 
the mean squared error (MSE). Because the MSE is 
based on the sum of squared residuals, the size of 
individual residuals is aggregated and the pattern of 
residuals obscured. After data are well understood and 
CDA is asking the constrained question concerning 
the relative size of residuals compared with model 
effects, F statistics and related techniques may be ap- 
propriate. However, when the underlying form of the 
data is not well understood, an exploratory data ana- 
lyst is more likely to ask "Where are the good and 
bad fits and why?" rather than the more specific ques- 
tions addressed in CDA. 

This analysis represents a valuable start for under- 
standing how perceptions of occupations vary across 
ethnicity. A bivariate structure of the table is sug- 
gested that offers detail about the size of effects well 
beyond noting the ethnicity with the highest options in 
each of the six significant chi-square tests reported by 
Lauver and Jones (1991). In sharp contrast to most 
applications of CDA, detailed analysis of residuals 
was used both to assess the model and to understand 

the data by examining their departure from the model. 
In EDA these residuals represent important deviations 
from expectations that inform us about the structure of 
the data rather than simply "error" that should be 
minimized. 

In this example, the table consisted of percentages, 
yet the two-way fit is general enough to apply to other 
types of values, including frequencies and means. 
Tukey (1986c) noted that such decompositions of 
tables based on multiplicative or, as in this case, 
additive models were long considered a standard tool 
in data analysis. He noted the additive model un- 
derlies ANOVA for crossed and nested factors, 
whereas the multiplicative model underlies the chi- 
square test of independence in contingency tables. 
This accounts for the fact that, when using mean 
smoothing on cell means, the two-way fit provides 
the same results as the procedures recommended by 
Rosenthal and Rosnow (1991) for interpreting inter- 
action effects in ANOVA. From the perspective of 
EDA, Rosenthal and Rosnow are recommending the 
use of F ratios for hypothesis testing and two-way 
fits with residual analysis for parallel EDA to help 
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build a rich description. Most programs for computing 
log-linear models will give similar results of pa- 
rameter estimates and cell residuals following a mul- 
tiplicative model. Hoaglin et al. (1991) discussed the 
two-way fit in detail using mean smoothing for a 
number of ANOVA designs. 

An elegant graphic representation of two-way fits 
and residuals is available, although its presentation is 
lengthy and beyond the scope of this article. Inter- 
ested readers may consult Tukey (1977) for its origi- 
nal treatment or Becker, Chambers, and Wilks (1988) 
or Statistical Sciences, Inc. (1993) for some computer 
implementations. Behrens and Smith (1996) should 
be consulted for an example using data from instruc- 
tional psychology. 

Use Robust and Resistant Methods 

In the analysis of the two-way table, fits were based 
on medians rather than means. In EDA, robust 
estimators such as the median are generally pre- 
ferred. Hoaglin, Mosteller, and Tukey (1983a) de- 
fined robustness as a concern for the degree to which 
statistics are insensitive to underlying assumptions. 
Mallows (1979) discussed three aspects of robust- 
ness: resistance, smoothness, and breadth. Resis- 
tance concerns being insensitive to minor pertur- 
bations in the data and weaknesses in the model 
used. Smoothness concerns the degree to which tech- 
niques are affected by gradual introduction of bad 
data. Breadth is the degree to which a statistic is 
applicable in a wide range of situations. Robustness 
is important in EDA because the underlying form of 
the data cannot always be presumed, and statistics 
that can be easily fooled (like the mean) may mis- 
lead. 

Several approaches are available to assess the re- 
sistance of a statistic (cf. Goodall, 1983b), includ- 
ing the breakdown point (Hampel, 1971). Hampel 
(1974) defined the breakdown point as "the smallest 
percentage of free contamination which can carry the 
value of the estimator over all bounds" (p. 388). Dis- 
cussing the resistance of regression lines, Emerson 
and Hoaglin (1983) explained a breakdown point as 
follows: 

Operationally, we can think of dispatching data points 
"to infinity" in haphazard or even troublesome direc- 
tions until the calculated slope and intercept can tolerate 
it no longer and break down by going off to infinity as 
well. We ask how large a fraction of the data--no matter 
how they are chosen--can be so drastically changed 
without greatly changing the fitted line. (p. 159). 

Other statistics can be assessed in a similar manner. 
For example, the percentage of data points that can be 
arbitrarily changed in a set of data without changing 
the mean is 0. In contrast, half the data of a distribu- 
tion can be altered to infinity before the median 
changes, thereby giving the median a breakdown 
point of 0.5. 

Additional resistant measures include the trimean, 
which is a measure of central tendency based on the 
arithmetic average of the value of the first quartile, the 
third quartile, and the median counted twice. The me- 
dian absolute distance from the median is a measure 
of dispersion that follows its name exactly. Winsoriz- 
ing (pulling tail values of a distribution in to match a 
preset extreme score) or trimming (dropping values 
past a preset extreme score) may also be used. Some 
researchers object to the differential weighting af- 
forded data in these cases. This differential weighting 
is, however, no different from procedures commonly 
used by instructors who drop a student's lowest score 
or Olympic judging that is based on a mean score 
following the elimination of the highest and lowest 
scores. As in psychological work, these strategies 
seem justified if the results downplay errant values 
while offering an otherwise expected summary. In 
one of his most influential papers, Fisher (1922) ar- 
gued that "assuredly an observer need be exposed to 
no criticism, if after recording data which are not 
probably normal in distribution, he prefers to adopt 
some value other than the arithmetic mean" (p. 323). 
Lind and Zumbo (1993) presented an overview of 
robustness issues in psychological research as did 
Wainer (1977a). 

Although problematic, data requiring resistant sum- 
maries are not uncommon in psychological work. For 
example, Paap and Johansen (1994) reported the re- 
suits of reaction time (RT) experiments aimed at 
evaluating their memory model of word verification. 
Among the data reported is the frequency with which 
each word used in the experimental task occurs in a 
standard corpus. The distribution of this variable is 
depicted in Figure 8. In addition to the extreme skew, 
the distribution is marked by an extreme outlier rep- 
resenting the word "that" with word frequency of 
10,595 in the reference corpus. The second most fre- 
quent word used from this corpus is " than" with a 
frequency of 1,789. The mean word frequency is 267, 
and the median frequency is 47. The failure of the 
mean and median to give a common indication un- 
derscores the value of resistant measures. The graphic 
display and these numbers suggest that the mean can 
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Figure 8. A dot plot of the distribution of word frequen- 
cies used by Paap and Johansen (1994). 

easily mislead the researcher from the bulk of the data 
and that the median is a good fit for most of the data 
points. 

Pay Attention to Outliers 

Although resistant measures guard against misin- 
formation from small perturbations, sometimes per- 
turbations are so great that inclusion of the bulk of 
data along with well-documented oddities leads to 
meaningless summary statistics. In EDA, extreme or 
otherwise unusual data are noted as outliers so they 
may be treated differently or call increased attention 
to a phenomenon. The problem of outliers has a long 
history. Hampel, Ronchetti, Rousseeuw, and Stahel 
(1986) noted that discussion of the omission of out- 
liers goes back as far as Bernoulli (1777/1961) and 
Bessel and Baeyer (1838). Hampel et al. provided 
additional references and notes, including Bernoulli's 
remark that rejection of outliers was commonplace 
among astronomers of his time. The discussion con- 
cerning the separation of extreme values has not 
ended (cf. Barnett & Lewis, 1994; Hawkins, 1980; 
Hoaglin & Iglewicz, 1987). 

When working in an exploratory mode, comparison 
of patterns in data that include all or only a subset of 
data is considered acceptable if the actions taken and 
the rationale are documented. This intrusion of sub- 
jectivity is deemed important because failure to seek 
outliers supposes all data are of equal importance and 
similar to the underlying process being observed. 
Hawkins (1980) defined an outlier as "an observation 
which deviates so much from other observations as to 
arouse suspicions that it was generated by a different 
mechanism" (p. 1), whereas Barnett and Lewis 
(1994) defined an outlier as "an observation (or sub- 
set of observations) which appears to be inconsistent 
with the remainder of that set of data" (p. 7). As the 
detective analogy suggests, the outlying data are tell- 
ing a different story from the rest of the data, and to 
try to summarize all of the data with a single model or 
statistic leads to a case of combining apples and or- 
anges. 

Temporarily setting aside an observation allows a 
diagnostic assessment of the role of the value in the 
summary statistics. For example, the effect of the 
word "that" in the Paap and Johansen experiments 
can be assessed by computing the mean both with and 
without the word included. When the word is re- 
moved, the mean of the data drops to 183 from the 
original 267. This change is considerable because the 
observation comprises only 1/128 or 0.8% of the data. 
This temporary diagnostic setting aside may lead the 
data analyst to set the observation aside for the re- 
mainder of the analysis or continue with it in the data 
set. A common extension of "setting one aside" is 
the generalized jackknife procedures (Efron, 1982; 
Mosteller & Tukey, 1977). When conducting a jack- 
knife procedure, the data analyst repeatedly removes 
subsets of the data and recomputes a statistic of in- 
terest with the eye for deviations in the statistic across 
subsamples. Homogeneity of the statistics reflects ho- 
mogeneity of information in the data, whereas vari- 
ability in the statistics reflects variability in the data, 
as seen previously. Although once considered only as 
EDA techniques, such procedures have become main- 
stream methods in areas including regression diagnos- 
tics that use a "leave one out" approach in measures 
such as Cook's distance and diffitts (cf. Atkinson, 
1985; Cook & Weisberg, 1994). 

An idea closely related to outliers is that of fringe- 
liers. Fringeliers are unusual points that are not as 
clearly deviant as outliers but may appear with un- 
usual frequency in unexpected ways (Wainer, 1977a). 
A group of observations clumped three standard de- 
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viations from the mean would be one example. As 
with outliers, relating the structure of fringeliers to the 
phenomenon being studied is the best possible out- 
come. Hadi and Simonoff (1993) discussed a number 
of similar issues for outlier detection in multivariate 
models. Although the data analyst working in the ex- 
ploratory mode is likely to set an observation aside if 
it allows sensible description of the remaining data, 
such a decision must consider other possible repre- 
sentations of the data, weigh gains and losses of in- 
formation, and document the status of any data that 
were set aside. 

Identification of outliers serve not only to improve 
the model of the remaining data but also to call at- 
tention to important aspects of the data that were not 
originally considered. Sometimes the outliers provide 
information about research-related processes such as 
typographical errors, malfunctions in recording ma- 
chinery, or programming errors. On other occasions, 
outliers may point to important aspects of the phe- 
nomenon being studied that were unanticipated. Al- 
though outliers may be set aside from the bulk of the 
analysis, they are not simply dismissed. On the con- 
trary, they should be considered in as much detail as 
possible to understand the process that generated 
them. Insofar as outliers tell us our original expecta- 
tions were wrong, they provide feedback for correct- 
ing our mental and computational models. Beveridge 
(1950) discussed a number of examples of scientific 
discovery motivated by the quest to understand such 
anomalous results. 

Reexpress the Original Scales 

Reexpression is deemed an important part of the 
data analyst 's toolbox because, as Mosteller and 
Tukey (1977) argued, "numbers are primarily re- 
corded or reported in a form that reflects habit or 
convenience rather than suitability for analysis" (p. 
89). The term "reexpression" is preferred in EDA to 
the more common usage of "transformation," be- 
cause it avoids the connotation of radical change of 
the underlying information. 

Reexpressions of data have long been used in ex- 
perimental psychology. Arcsine transformations of 
percentages are typically recommended  in the 
ANOVA context (e.g., Winer, 1971), and raw scores 
are often reexpressed as standard scores. Neverthe- 
less, transformations are suspect in many subdisci- 
plines of psychology and outright rejected in others. 
The most common concern is that reexpression leaves 
data analysis as a subjective process where a trans- 

formation can be chosen to "prove anything." These 
concerns can be mollified by noting (a) reexpression 
of numerical values is common in everyday life and 
psychological work and (b) the goal of reexpression is 
to find a scale that represents the phenomenon in a 
meaningful way. 

Reexpressing data as standard scores or log func- 
tions is a familiar practice in psychological research. 
Daily life holds experience of reexpressed scales as 
well. Hoaglin (1988) noted a number of examples of 
reexpression from everyday experience, including the 
Richter scale for earthquakes (a logarithmic scale); 
gasoline consumption (the reciprocal of the gas used 
times the number of miles driven); and camera lenses 
(f-stops are spaced in a logarithmic scale). Many data 
analysts reexpress their data without concern. Sums 
are commonly multiplied by the reciprocal of the 
sample size to obtain a mean. When frequency data 
are not interpretable in a straightforward manner, the 
frequency in a particular category times the reciprocal 
of the total possible frequency (the relative frequency) 
is commonly used. Sometimes this scale is further 
altered by multiplying the relative frequencies by 100 
to obtain percentages. 

In a complete treatment of reexpression, Emerson 
and Stoto (1983; cf. Emerson, 1991) gave several rea- 
sons why transformations are desirable, including the 
fact that they may (a) "facilitate interpretation in a 
natural way,"  (b) "promote symmetry in a batch," 
(c) "promote stable spread in several batches," and 
(d) "promote a straight line relationship between two 
variables" (p. 104). 

Most of the examples just given work toward the 
goal of facilitating interpretation in a natural way. 
Promoting symmetry is often desirable because it al- 
lows for comparison of scores across different parts of 
a single distribution. Stable spread across batches of 
data likewise allows comparison of scores across mul- 
tiple distributions. Promoting a straight line relation- 
ship is also valuable because most regression analyses 
follow a linear form. In many cases, an appropriate 
reexpression solves several of these goals. Wainer 
(1977b) showed how different conclusions from very 
similar experimental data were likely caused by the 
presence of an outlier in data when organized as RT, 
although when it was reexpressed as speed data (1/ 
RT) the extreme values were nonproblematic. By pro- 
moting symmetry, this reexpression also facilitated 
interpretation. 

Reexpression is essential in EDA because it ad- 
dresses the often neglected issue of scaling. Research- 
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ers may focus on precisely aligning their theoretical 
hypotheses with statistical tests and yet fail to col- 
lect preliminary evidence concerning the distribu- 
tional form their measurements take. Although a 
relationship between two variables may be hypoth- 
esized on the basis of theoretical work, the statistical 
analysis occurs on an empirical realization that is a 
result of the underlying form of the constructs and the 
way in which the constructs are measured. Failure to 
delve into a detailed analysis of the form of the dis- 
tributions and the reexpressions that make them most 
interpretable can lead to glaring misinterpretations of 
the data. 

Putting It All Together: A Reexamination of  the 
Paap and Johansen Data 

The preceding sections have examined a number 
of foundational tools in the EDA toolbox. The theme 
common to all the procedures described previously 
is not the use of canonical technique but a willing- 
ness to use any technique that helps ensure a rich 
mental model of the data that fits closely with the 
true form of the data. This requires a high degree 
of interactivity with the data and a familiarity with 
a wide range of techniques. To illustrate how these 
principles and procedures interact, data published 
in the Journal of Experimental Psychology: Human 
Perception and Performance, which were intro- 
duced previously in the discussion of resistance, are 
now reexamined from an EDA perspective. In this 
article, Paap and Johansen (1994) reported numerous 
analyses of several data sets used to support their 
theory of word verification, including RT data for 
128 words from a standard experimental lexicon. 
Variables associated with each word include the 
average RT to respond to each word in an experi- 
mental task, the number of high-frequency neigh- 
bors (HFN), neighborhood size (NS), word fre- 
quency in the lexicon (WF), and the summed bi- 
gram frequency (SBF). A neighbor is a word created 
by changing a single letter in an original word. 
HFN are words similar to the original word that 
occur often in standard use. The SBF is a measure 
of position-specific bigrams that occur in the word. 
The authors summarized their expectations toward 
these data arguing "the only variable that directly 
determines word RT is the number of HFNs . . .  
Thus, NS, SBF and WF are all indirectly effects 
that should not account for any of the variance in 
word RT once the effects of HFN were partialed 
out" (pp. 144-145). 

Paap and Johansen tested this hypothesis by us- 
ing OLS multiple linear regression, which is com- 
monly referred to as "multiple regression." The 
fuller name, however, reminds us of the assumption 
of linearity inherent in that procedure and the sen- 
sitivity of the regression line to extreme values 
when the OLS approach is used. While keeping an 
eye on their original hypothesis, working in an ex- 
ploratory mode allows broader questions such as: 
How are the independent variables related to each 
other and the dependent variable? What patterns un- 
derlie the results reported by Paap and Johansen? 
What can be done to improve the model? What can 
we find that we did not expect? How might we be 
fooled by the summaries? 

A first look. When working with multivari- 
ate data such as these, a common strategy is to 
examine variables individually and then in bivariate 
and higher order configurations. Figure 9 depicts 
the shapes of distributions from this analysis using 
boxplots. An analyst working on these data should 
view histograms, density plots, and dot plots as 
well. Before suggesting first aid for these messy 
distributions using outlier handling or reexpression, 
it is often helpful to assess how the shapes of these 
distributions affect assessment of bivariate and higher 
order relationships in the data. This can be done 
graphically using a scatter plot matrix (also called 
a generalized draftsman's display) described in 
Chambers et al. (1983) and shown in Figure 10. 
The plot presents all pairwise combinations of the 
five variables of interest. The graphic may be thought 
of as a pictorial correlation matrix with scatter 
plots replacing correlation coefficients. In this ver- 
sion of a scatter plot matrix, normal probability 
plots are presented in the matrix diagonals, with 
variable labels indicating the associated row and 
column scales. For example, on the top row of plots, 
the RT measure is plotted on each vertical axis while 
the x-axes vary from HFN to NS to WF and SBF as 
one moves from left to right in that row. The HFN 
variable is plotted on the vertical axis of all plots in 
the second row and on the horizontal axis of plots in 
the second column. The top right-most plot indicates 
RT on the vertical axis and SBF on the horizontal 
axis. 

Normal probability plots are a diagnostic aid used 
to assess the degree to which the empirical distribu- 
tion matches the Gaussian distribution. This is accom- 
plished by calculating the fraction of data below each 
data value (i.e., the quantile) and computing the z 
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Figure 9. Box plots of word verification variables from Paap and Johansen (1994) indicat- 
ing severe nonnormality and outliers. The locations of data in the upper and lower quartiles 
are marked using lines extending away from the box. The (3 indicates outliers that deserve 
special attention. The * indicates extreme outliers. (RT = reaction time; HFN = high- 
frequency neighbors; NS = neighborhood 
bigram frequency.) 

score for points with corresponding quantiles in the 
Gaussian distribution. When the scale values are plot- 
ted against the expected z score, a straight line is 
obtained if the distribution is Gaussian. Curves in the 
normal probability plot indicate skew, whereas S 
shapes indicate shorter than expected tail regions. 
Cleveland (1993) presented a complete discussion of 
the normal probability plot and the more general 
quantile-quantile plot. The farthest left plots in Rows 
1 and 2 of Figure 10 indicate moderate positive skew 
in RT and HFN while the NS plot indicates relative 
normality, and WF and SBF plots indicate marked 
deviation from Gaussian shape. Individual outliers are 
marked as "xs . "  Although these patterns were visible 
in the box plots, normal probability plots are an im- 
portant adjunct because they are compared directly 
against the normal distribution and display each piece 
of datum rather than the five-number summary of the 
box plot. The extremity of the word " tha t"  in WF can 
be seen in the bivariate plots. 

One natural method for summarizing the bivariate 
relationships between variables is to use the formula 
for a line as a fit from which to derive residuals. If an 
OLS fit is used (as is the default in most computer 
packages), the line is easily affected by extreme val- 
ues such as the outliers in WF and SBF, which rep- 
resent the common words " tha t"  and " than."  In in- 
teractive data analysis environments common to 

size; WF = word frequency; SBF = summed 

EDA, quick assessment of such effects is straightfor- 
ward. In this case, regression lines were added to a 
number of the scatter plots in Figure 10 to indicate the 
OLS predictions that would be computed with and 
without the two outlying values. This was accom- 
plished by selecting options from pull-down menus 
accessible on the scatter plots themselves (Data De- 
scription, Inc., 1995). In each case, the regression line 
nearest the outlier indicates prediction lines with the 
outliers included. 

It is clear from these plots that the extreme outliers 
are dramatically different from the bulk of the data 
and disproportionately influence the fit from the least 
squares line. Likewise, these extreme points are arti- 
ficially inflating or deflating the correlation that 
holds in the mass of the data. For the case of WF, 
the outliers pull the line toward a slope of zero when 
compared against the negative slope that exists when 
the outliers are set aside. In addition to the difficulty 
with the regression lines being disproportionally af- 
fected by these points, their presence compresses 
the variability in the bulk of the data and may hide 
important patterns. Because these two outliers ap- 
pear to be qualitatively different from the bulk of 
the data, unduly influence the OLS summary, and 
may distort the visual impression of the data, it is 
advisable to set them aside for some portion of the 
analysis. 
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Figure 10. Scatter plot matrix of word verification data from Paap and Johansen (1994). 
Outliers are indicated with the "x"  symbol. Regression lines have been added to indicate 
predicted values as they would occur with and without the outliers included. (RT = reaction 
time; NS = neighborhood size; HFN = high-frequency neighbors; SBF = summed bigram 
frequency, WF = word frequency.) 

A Better Description. Temporari ly setting aside 
the two outlying data points and reconstructing the 
scatter plot matrix leads to the display in Figure 11. In 
this plot the relationships with SBF are clearer (al- 
though not very strong), and curvilinear relationships 
between W F  and both RT and HFN are visible. These 
curvil inear relationships are not complete ly  unex- 
pected. The curved form of the data is reflected in the 
bunching up of  the data in the lower left comer  of  the 
two-dimensional plot. This is l ikely to occur given the 
bunching of  data in the lower part of each of  the 
univariate distributions. 

A straightforward way to find an appropriate de- 
scription for the curved function is to find a reexpres- 
sion of  the univariate distributions that leads them to 

a roughly Gaussian shape. By finding the degree to 
which the univariate distributions need to be reex- 
pressed to be Gaussian, one also finds the degree to 
which the line of  fit must be bent to meet the data. 
When reexpressing variables in EDA, one may use 
the notion of  a ladder of reexpression. A number of 
versions of  the ladder exist. In each case the rungs of 
the ladder represent an exponential value to which 
scores may be raised. In the simplest case, movement 
up the ladder  refers to raising scores to a higher 
power. Moving down the ladder  refers to raising 
scores to decreasing negative exponents (reciprocals). 
Exponents along this ladder and the corresponding 
reexpression are listed below for the range of expo- 
nents from - 2  to +2. 
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Figure 11. Scatter plot matrix of word verification variables from Paap and Johansen (1994) 
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Exponent 

_X -2 

_X-1 

_X-I/2 

x o 

XI/2 

X 1 

X 2 

Reexpression 

-1  

x 2 

-1  

x 

-1  

log10 (X) 

V7 
(no change) 

x 2 

The center of  the ladder is an exponent of  1, which 
leaves a score unchanged. An exponent of  0 always 
returns a value of  1 so this is typically replaced by a 
log]o transformation, which fits in well between X-l/2 
and X 1/2 transformations (Mosteller & Tukey, 1977). 
Because negative exponentiation alone reverses the 
ordering of  observations, most analysts prefer using 
- X  -n rather than simply X-% as reflected above. To 
facilitate reexpression, the most advanced EDA pro- 
grams provide menu options for transformations 
along the ladder of  reexpression as well as slider bars 
that can be moved up and down similar ladders (such 
as the Box-Cox family of  reexpressions). Histograms, 
box plots, normal probability plots, and any other 
graphics or summary tables are updated automatically 
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as the slider values change. Such systems allow quick 
assessment of a large number of reexpressions. 

A choice of transformation is recommended by 
moving up or down the ladder in the direction of the 
bulk of the data on the scale. Positively skewed dis- 
tributions with the bulk of the data lower on the scale 
can be normalized by moving down the ladder of 
reexpression; distributions with the bulk of the data 
high on the scale can be normalized by moving up the 
ladder of reexpression. In the present case, the WF 
variable has the bulk of the data in the lower portion 
of the distribution, so moving down the ladder is ap- 
propriate. Starting with WF 1 (the unchanged data), we 
move down to WF 1/2, which is the square root of WF, 
followed by WF °, which is assigned the value of 
loglo(WF), and -WF-V2, which is equal to minus one 
over the square root of WF. Box plots of each of these 
transformations for all data, including the outliers, are 
presented in Figure 12. As the reader may see, reex- 
pression to a log transformation provides an approxi- 
mately Gaussian distribution, whereas more extreme 
reexpression leads to distortion in the opposite direc- 
tion and less extreme reexpression fails to correct the 
shape. In practice, normal probability plots rather than 
box plots would be used to assess normality. Box 
plots, however, effectively and compactly communi- 
cate the effect of the reexpressions. 

Panel a of Figure 13 is a scatter plot of RT re- 
gressed on loglo(WF) with the two outliers indicated 
by "Xs"  and regression lines for models with all the 
data as well as from outlier-deleted data only. Panel b 
is a plot of the regression residuals versus loglo(WF). 

These plots indicate that the log reexpression im- 
proves the fit dramatically, whereas the similarity of 
regression lines with and without the outliers (Panel a) 
indicates that setting aside the outliers does little to 
change the regression line. In this dimension the out- 
liers may be considered natural extensions of the tail 
of this log-normal distribution. A very misleading fit 
would occur in any model assuming RT = a + b(WF) 
rather than RT = a + b(log(WF)). The residual plots 
also indicate three words whose residuals are excep- 
tionally large as indicated by their positions above the 
bulk of the data in the left, center, and right side of the 
residual plots. These points indicate the values of the 
words "oa f , "  "mere , "  and " c a m e "  respectively, 
with RTs much longer than otherwise expected given 
their word frequency. Analyses of the SBF variable 
lead to the conclusion that the SBF variable is roughly 
Gaussian with the exception of the two outliers. 

To properly specify a linear model using the WF 
variable, it should be reexpressed to log(WF). To ap- 
propriately include SBF, the two extreme points 
should be set aside and noted for their impact on the 
analysis. Including the two outliers in subsequent 
analyses would serve no purpose but to demonstrate 
that the majority of the SBF pattern cannot be well 
modeled because of two rogue points. Setting them 
aside will allow appropriate modeling of the bulk of 
the data. This is a practical application of the principle 
that it is better to be somewhat right than precisely 
wrong. All of this information suggests the corpus of 
words used in this study requires additional attention. 

How did we do ? To assess the total effect of the 

1 ZOO0 

10000 

8000 

6000 

4000 

2000 

0 

105 

• 9O 

75 

60 

45 

3O 

0 

WF 

4.50 

3.75 

3.00 

2.25 

o 
S 1.50 

t 0.75 

0.00 
LOG(WF) 

-0.00 - 

-0.15 - 

-0.30 - 

-0.45 - 

-0.60 

-0.75 t 

-0.90 

-1.0S - 

-1/4~" 

Figure 12. Box plots of reexpressions of word frequency (WF) moving down the ladder of 
reexpression. The location of data in the upper and lower quartiles are marked using lines 
extending away from the box. The O indicates outliers that deserve special attention. The * 
indicates extreme outliers. (RT = reaction time; HFN = high-frequency neighbors; NS = 
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Figure 13. Panel a: Scatter plot of reaction time (RT) versus log (word frequency[WF]) with 
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data in Panel a. 

work we have done up to this point, we replot the 
scatter plot matrix with the SBF outliers removed and 
the reexpressed WF variable as shown in Figure 14. 
Comparing the quality of  regression lines for predict- 
ing data in Figure 14 with that of  Figure 10 under- 
scores the value of  EDA in steering researchers to- 
ward  an appropr ia te  model .  The reexpress ion  
corrected the curvilinearity in the W F - R T  relation- 
ship as well as in the W F - H F N  relationship. Because 
it is sometimes difficult to understand the reexpres- 
sion being used, readers may benefit from seeing pre- 
dicted values from reexpressed variables plotted in the 
scale of  the original variables as shown in Figure 15. 
Panel a portrays the predicted values of  RT from 
log(WF) plotted against log(WF), and Panel b por- 
trays the same values plotted against their correspond- 
ing WF values. When viewed in conjunction with the 
RT versus WF plot in Figure 11, Figure 15 reveals the 
relation between log(WF) and WF is a natural reex- 
pression that catches the curve in the data that is oth- 
erwise missed by failing to reexpress the data. 

Interestingly, Paap and Johansen (1994) noted that 
log transformations have been computed in other re- 
search labs and have led to substantive conclusions 
different from their own. They therefore reanalyzed 
the data described here using the log(WF) transfor- 
mation on the grounds of  historical precedence in RT 
experiments. Focusing primarily on the size of  the 
correlations and the role of  the logged variable in a 
multiple regression analysis predicting RT, the im- 
provement in fit observed here was interpreted quite 
differently.2 

In summary, when plain WF was entered as a predictor, 
the number of HFNs and NS were significant predictors. 
However, when log WF was used, only log WF was a 
significant predictor. The skittishness of the variables in 

these analyses may have occurred because the collinear- 
ity problem between the predictors actually became 
worse when the log transform was applied. The correla- 
tion of -.23 between plain WF and the number of HFNs 
ballooned to -.65 for the log WF. The greater the col- 
linearity between two predictors, the less confident one 
can be that the statistical model has identified the real 
winner . . . .  Because of the collinearity problem, some 
will see the hole (effects of log WF) where others see the 
doughnut (effects of NS and the number of HFNs) in our 
data. (pp. 1145-1146) 

Without the log transformation, these authors found 
what they predicted: a significant relationship be- 
tween RT and HFN and a nonsignificant relation be- 
tween RT and WF. Alternatively, the logarithmic re- 
expression led to a nonsignificant correlation between 
RT and HFN and a significant correlation between RT 
and log(WF), results inconsistent with their theory. 
Without understanding the shapes of  the distributions 
involved and the effect of  curvilinearity and outliers, 
these authors were left to hypothesize "skittishness" 
and "bal looning"  variables, collinearity, and a posi- 
tive-thinking bakery theory for choosing among sta- 
tistical models. The simple graphics used here, how- 
ever, explain the situation quite well. WF has a 
curvilinear (logarithmic) relationship with RT and 
HFN. This curvilinearity is a violation of  an assump- 
tion of  the linear regression model used. Therefore, no 
significant slopes can be found, as indicated in Figure 

2 The analysis discussed in the passage quoted here dis- 
cusses a model with a term for the summed log bigram 
frequency rather than the summed bigram frequency dis- 
cussed in this article. This difference did not affect the 
relationship among RT, HFN, and WF discussed here and is 
omitted for the sake of simplicity. 
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Figure 14. Scatter plot matrix of the Paap and Johansen (1994) data with log reexpression 
of WF and two outliers removed. (RT = reaction time; NS = neighborhood size; HFN = 
high-frequency neighbors; SBF = summed bigram frequency, WF = word frequency.) 

10. The log transformation specifies the degree of  
bend in the data so it can be accommodated by the 
regression model RT = a + b(HFN) + b(NS) + 
b(SBF) + b(log(WF)). The correct log(WF) model 
specification reveals a strong curvilinear relationship 
between RT and WF as well as HFN and WF. 

The disappearance of  the HFN effect needs to be 
understood in the context of  the multiple regression 
models used. In such models, relationships between 
each predictor variable and the criterion are adjusted 
for the presence of  all the other predictor variables. 

When WF is included in the equation in its original 
form, the suppressed measure of  relationship leads to 
little correction in the HFN-RT relationship. When, 
however, WF is appropriately reexpressed to account 
for the curvilinearity, its relation with HFN is prop- 
erly expressed as high linear relationship and the re- 
lation between HFN and RT is adjusted downward to 
take into account the now large correlation between 
HFN and log(WF). 

These important aspects of  the analysis can be in- 
ferred from Figure 14, correlation matrices, and the 
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on (Panel a) scale of log(WF) and (Panel b) scale of WF. Note how the predicted values 
properly model the curve of the data in the original scale. 

slope estimates of the multiple regressions. Neverthe- 
less, the exploratory analyst may want additional in- 
formation because partial correlations and conditional 
slopes may also be distorted by aberrant data patterns. 
To obtain a more detailed description of the data as 
represented in the machinery of the multiple regres- 
sion and to assess the validity of the computational 
model, partial regression plots can be used. A partial 
regression plot takes advantage of the fact that adjust- 
ing one predictor, such as HFN, for its relationship 
with another predictor, such as log(WF), is equivalent 
to regressing HFN onto log(WF) and using the residu- 
als for subsequent analyses. Because the residuals are 
the data after the effect of the model have been sub- 
tracted, the residual from HFN = a + b(log(WF)) are 
WF-corrected HFN data. Any analysis with these re- 
siduals would be equivalent to a partial regression of 
HFN. According to Velleman (1992), " A  partial re- 
gression plot graphs y with the linear effects of the 
other x-variables removed against x with the linear 
effects of  the other variables removed" (pp. 23-24). 

Panel a of Figure 16 is the partial regression plot 
between RT and HFN when each is adjusted for NS, 
WF, and SBF. Note that the slope of the line indicates 
that a relationship exists between these two variables 
after their adjustment for relations with other vari- 
ables. Panel b is a partial regression plot between RT 
and HFN when both are adjusted for NS, log(WF), 
and SBF. The absence of relationship between the two 
sets of residuals in Panel b reflects the small partial 
correlation between these variables that has occurred 
because the properly specified model leads to appro- 
priate measures of relationship with WF and RT and 
HFN. The WF variable is not skittish but strongly 
curvilinear in a world in which these data analysts 
assumed all relationships are linear. 

Life without EDA. The interactive analysis de- 
scribed here contrasts Paap and Johansen's (1994) use 
of CDA alone. Working in an exploratory mode, an 
initial model was sought, transformations were at- 
tempted, residuals were used for model evaluation, 
and the cycle of model searching continued. This pro- 
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Figure 16. Partial regression plots of reaction time (RT) and high-frequency neighbor 
(HFN). Each variable is adjusted for linear relations with all other predictors. Additional 
explanatory variables are neighborhood size (NS), word frequency (WF), and summed big- 
ram frequency (SBF) for Panel a and NS, log(WF), and SBF for Panel b. 
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cess quickly revealed numerous unexpected aspects of 
the data with important consequences for model de- 
velopment. Without the detailed description and open 
attitude available in EDA, Paap and Johansen were 
left with seemingly conflicting statistics from the 
black box of the hypothesis tests. They began with 
specific hypotheses concerning what variables would 
be related under what conditions, but, because of a 
lack of detailed familiarity with the data, they failed to 
specify a model even close to the empirical outcome. 
This underscores the idea that theoretical hypotheses 
need to be balanced with rich knowledge of the data 
being examined. Even when firm hypotheses are held 
a priori, working in the exploratory mode is always 
useful to find out what we did not expect. The only 
caveat required is that conclusions obtained as the 
result of exploratory analyses are considered explor- 
atory and that confirmation of such conclusions will 
occur only when CDA is undertaken on different data. 

The analysis reported here is a small part of an 
exploratory analysis of this data. Although the loga- 
rithmic transformation appears to lead to quite good 
model specification, the RT variable has some depar- 
ture from symmetry and may benefit from a 1/RT 
reexpression that would put it in the scale of speed. 
Other types of regression diagnostics and plots could 
have been used such as three-dimensional rotating 
plots and the assessment of other outliers. 

Conclusion: Psychological  Method and EDA 

EDA is a well-established tradition in the statistical 
literature. The goal of EDA is to find patterns in the 
data that allow researchers to build rich mental mod- 
els of the phenomenon being examined. Examining 
the Feingold (1994) and Lauver and Jones (1991) 
data, we found EDA useful when there is little explicit 
theoretical background to guide prediction and the 
first stages of model building is desired. Examining 
the Paap and Johansen data, we also saw that, even 
when a priori hypotheses exist, EDA can perform a 
valuable service by providing rich descriptions of the 
data that can inform the research whether their mental 
models are even close enough to the underlying data 
patterns to consider CDA. In either case, tools for 
EDA provide a much wider range of information than 
the answers to a specific probabilistic question. 

Theory development and testing are hallmarks of 
scientific psychology. Good theory development and 
testing integrate a wide range of information about the 
data being evaluated, so researchers can be certain 

they have not missed important aspects of the phe- 
nomenon and have not been fooled by pathological 
data patterns or model misspecification. EDA pro- 
motes good theory development and testing by help- 
ing researchers ensure their models are aligned with 
reality and they are not being misled by more re- 
moved summaries. As long as researchers are clear 
about what activity is exploratory and what is confir- 
matory, and the strength of conclusions from each 
mode are appropriate, EDA will facilitate, rather than 
retard, theory development and testing. An increase in 
our knowledge about the data is always beneficial as 
long as its limits are clear. From this analysis a num- 
ber of recommendations can be made. 

First, EDA should be recognized as an important 
aspect of data analysis whose conduct and publication 
are valued. By admitting EDA as an acceptable set of 
procedures, researchers can avoid the improper use of 
CDA techniques for the purposes of data exploration. 
As long as EDA remains a covert activity, researchers 
will continue to improperly use CDA for data explo- 
ration through model underspecification and overtest- 
ing. An increase in EDA will focus more resources at 
the preliminary stages of investigations and less at the 
advanced stages. In so doing, the number of irrepro- 
ducible results may be reduced by the substitution of 
adequate model building for the cataloging of signifi- 
cant effects. Further, the detail in modeling afforded 
by EDA may improve our understanding of phenom- 
enon otherwise hidden behind simple summary statis- 
tics and tests, as seen in the Paap and Johansen (1994) 
data. In this regard, editors and reviewers should fol- 
low the lead of Loftus (1993), whose first editorial 
statement for Memory and Cognition included head- 
ings of "Figures are Good" and "Data Analysis: A 
Picture is Worth a Thousand Words." 

This is not to say that all exploratory work should 
be published, but rather that all published and initial 
work should be explored. The field would greatly 
benefit if all published reports included the statement 
"we examined the data in detail and found the pat- 
terns underlying the summary statistics were not ob- 
viously pathological." More detailed reporting would 
also be welcome. When auxiliary exploratory analysis 
cannot fit into a standard journal format, additional 
graphics and reports may be distributed over the In- 
ternet or by other electronic means. Behrens and 
Dugan (1996) provides an example of such supple- 
mental graphic reporting. 

Second, quantitative analysis should be thought of 
"more as applied epistemology and less as applied 
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mathematics" (Behrens & Smith, 1996). When con- 
sidering statistics as applied mathematics rather than 
applied epistemology, many messy real-world issues 
are often swept under the rug. Instruction addressing 
the assumptions that must be met for a statistic to be 
meaningful almost always focuses on assumptions 
about theoretical distributions rather than assumptions 
about the world. Sharing this value with EDA, Box 
(1976) labeled the overemphasis on theoretical issues 
"mathematistry" for which he prescribed practical 
experience and trust of the scientist's intuitions. By 
focusing on understanding the data in whatever way is 
reasonable (not only probabilistically), EDA opens 
the data analyst to consider the wide range of ways of 
knowing about data. This ecumenical view leaves re- 
searchers considering mathematics as an epistemic 
tool rather than a complete answer in itself. Math- 
ematics should be used based on how helpful it is in 
understanding data, not simply on its syntactical cor- 
rectness. Such a position will minimize what has been 
referred to as Type III error: "precisely solving the 
wrong problem, when you should have been working 
on the right problem" (Mitroff, Kilmann, & Barabba, 
1979, p. 140, cited in Barabba, 1991). 

Third, graduate programs should integrate instruc- 
tion in confirmatory statistics with alternative data 
analytic methods. Instruction in EDA offers students a 
view of data analysis from outside traditional statis- 
tics. Such an alternate view may allow new apprecia- 
tion and understanding of CDA. Other complemen- 
tary methods include meta-analysis (Glass, 1976; 
Glass, McGaw, & Smith, 1981), Bayesian analysis 
(Howson & Urbach, 1993; Winkler, 1993), interval 
estimation approaches, and hybrid combinations 
(Box, 1980). Just as history and systems of psychol- 
ogy are taught in psychology, might students not ben- 
efit from a history and systems of data analysis? The 
appropriate size of such curricular additions will vary 
across programs. At the very least, the idea of multi- 
conceptual approaches could be incorporated in al- 
ready existing classes. 

Fourth, data analysts should recognize that subjec- 
tivity and potential bias are inherent in all data analy- 
sis, exploratory or otherwise. One great danger in 
overmathematizing data analysis is believing that the 
reliability and precision of mathematics itself imbue 
reliability and precision to the data and the data analy- 
sis. The artifactual nature of psychological investiga- 
tion has been well established by Rosenthal (1966), 
Rosnow (1981), Danziger (1990), and others. Under- 
standing of the role of cognitive, historical, and social 

artifact in data analysis is also emerging. Rosenthal 
(Cooper & Rosenthal, 1980; Rosenthal & Gaito, 
1963, 1964) demonstrated a consistent overweighing 
of "significance" in light of varying sample sizes, 
and Bar-Hillel (1989; Bar-Hillel & Falk, 1982) illus- 
trated the subjectivity inherent in translating math- 
ematical concepts into natural language. Flow charts 
and expert systems suggest data analysis is a purely 
rational process, yet choice of data analytic behavior 
is ultimately dependent on the same psychological 
factors that affect cognition and behavior in other 
spheres of life. Bias in data analysis will not be mol- 
lified by assent to stricter design and control of Type 
I error, but by the detailed analysis of data that ex- 
cludes alternate statistical explanations as demon- 
strated previously. 

Fifth, psychologists should consider the possibility 
that their craft can improve the conduct of EDA and 
data analysis in general. For example, Simon (1973; 
Simon, Langley, & Bradshaw, 1981) has long held 
that logics of discovery are possible and psychologi- 
cally tractable, a position supported by the construc- 
tion of the BACON program (cf. Langley, Simon, 
Bradshaw, & Zytkow, 1987). Gigerenzer (1991) 
noted that the heuristics encoded in BACON are quite 
similar to those of EDA and mentioned Tukey (1977) 
specifically. Investigations are still needed to examine 
the processes involved in comprehending common 
statistical graphics (cf. Simkin & Hastie, 1987; Koss- 
lyn, 1989; Lewandowsky & Spence, 1989, 1990) as 
well as those specific to EDA (cf. Behrens, Stock, & 
Sedgwick, 1990; Stock & Behrens, 1991). The statis- 
tical community recognizes the potential of transdis- 
ciplinary work and has provided open invitations to 
the psychological community (Kruskal, 1982; Mo- 
steller, 1988; Tukey & Wilk, 1986). 

Given dramatic improvements in computational 
ability and increased sensitivity to the psychological 
and social aspects of data analysis, the time is ripe for 
a broad conceptualization of data analysis that in- 
cludes the principles and procedures of EDA. Lest 
these recommendations seem dogmatic, the final 
word is left for Neyman and Pearson (1928) from 
"On the Use and Interpretation of Certain Test Cri- 
teria for Purposes of Statistical Inference." This ar- 
ticle represented the first great break from the Fish- 
erian view (introducing alternative distributions and 
Type II error) and the beginning of current practice. 
Their attitude toward mechanized inference can easily 
be deduced. It is, in fact, good counsel for consider- 
ation of any method: 
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The process of reasoning, however, is necessarily an 
individual matter, and we do not claim that the method 
which has been most helpful to ourselves will be of 
greatest assistance to others. It would seem to be a case 
where each individual must reason out for himself his 
own philosophy. (p. 230). 
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A p p e n d i x  

Sof tware  for E D A  

As computer graphic capabilities widen in commonly 
used machines, software for graphic and exploratory analy- 
ses gain in popularity. Nevertheless, a few programs have a 
decisively strong EDA emphasis. In this article, all the 
graphics with the exception of kernel density estimates were 
produced in Data Desk on an Apple Power Macintosh com- 
puter. As illustrated previously, Data Desk is an exceptional 
tool for EDA, having been designed from its inception to be 
an EDA technology. The documentation that accompanies 
the software may be the single best source of technical and 
practical information concerning EDA. Data Desk offers a 
completely graphical interface for EDA and requires no 
programming. Another heavily EDA oriented program is 
S-plus, the only software package I know of that supports 
graphics for the two-way fit. S-plus is a completely exten- 
sible object-oriented programming language available for 
UNIX and MS-Windows environments; however, it has less 
graphical interactivity than Data Desk. S-plus is commonly 
used in the statistical graphics research community, and 
there is a large archive of user-created S-plus functions 
available at the Carnegie Mellon Statlib at http:// 
lib.stat.cmu.edu. 

The kernel density estimate plots shown previously were 
produced in XLISP-STAT (Tierney, 1990), a LISP-based 
system of statistical functions and graphics that is com- 
pletely extensible and highly interactive. XLISP-STAT is 
also gaining a wide following in the statistical graphics 
community. XLISP-STAT does not require LISP program- 

ming skills for most tasks and is available for UNIX, Mac- 
intosh, and Windows environments for free. Copies of the 
program can be obtained at http://stat.umn.edu. 

Other programs incorporate EDA procedures as well. Sy- 
stat has a wide variety of graphics and some interactivity as 
does SAS-JMP, although SAS-JMP reflects some more 
CDA philosophies than may be convenient for strong EDA 
work such as the strong association of levels of measure- 
ment with types of analyses (see Velleman & Wilkinson, 
1993, for a discussion of this concept). Almost all software 
packages are now emphasizing the strength and beauty of 
graphical analysis with access to box plots, stem-and-leaf 
plots, and so on. Consumers should beware that EDA func- 
tions best in highly interactive environments that support 
quick question assessment. This involves complex interface 
issues that cannot be solved by the simple inclusion of a 
new plot in the list of options. 

Readers interested in learning more about current issues 
in data visualization and advances in statistical computing 
should consult the Journal of Computational and Graphical 
Statistics, which was inaugurated in 1992. When consider- 
ing specific products, readers may want to consult The 
American Statistician, which periodically contains software 
reviews by statistical computing experts. 
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