```{r setup, include=FALSE}
if (!require("knitr")) {
install.packages("knitr")
library(knitr)
}
if (!require("pander")) {
install.packages("pander")
library(pander)
}
if (!require("tidyverse")) {
install.packages("tidyverse")
library(tidyverse)
}
if (!require("ggplot2")) {
install.packages("ggplot2")
library(ggplot2)
}
if (!require("plotly")) {
install.packages("plotly")
library(plotly)
}
knitr::opts_chunk$set(echo = FALSE)
```
# Getting Started with Slidy Presentation
- Default template: simple and flexible.
- Suggested modified template: YAML header
```
---
title: '
Slidy Presentation '
author: "Cheng Peng"
date: '
West Chester University'
output:
slidy_presentation:
font_adjustment: +1
footer: 'Slidy presentation created using RMarkdown'
widescreen: yes
self_contained: true
---
```
- CSS file (feel free to modify)
- `(level 1 Header: #)` starts title slides with no accompanying text underneath.
- `(level 2 Header: ##)` starts new slides with additional content underneath.
- `Markdown tag ---`: an alternative to `##`.
# Bullet Points
- level 1 bullet
- level 2 bullet
- level 2 bullet
- level 1 bullet
- level 1 bullet
- level 2 bullet
- level 3 bullet
# Two-column slide
## HTML Table
Left-column Right-column
left cell contents
right cell contents
## Markdown Table
| Left-column | Right-column |
|:------------------:|:--------------------:|
| left cell contents| $x^2+y^2 = r^2$ |
# Slide with R Kable Output
```{r}
knitr::kable(summary(cars))
```
# Default Output Table
```{r comment = NA}
summary(cars)
```
# Slide with Plot
```{r pressure, fig.align='center', fig.width=4, fig.height=4}
par(bg="#8fb0c4")
plot(pressure)
```
# Include External Images
- using software remove background first (e.g., )
- embedding transparent image to the slide to match the background color.
- see the example below
# Embedding Opened PDF Documents
Unable to display PDF file. Download instead.
# Overlay Density Curves
```{r echo=FALSE}
# define three densities
sepal.len.setosa <- iris[which(iris$Species == "setosa"),]
setosa <- density(sepal.len.setosa$Sepal.Length)
sepal.len.versicolor <- iris[which(iris$Species == "versicolor"),]
versicolor <- density(sepal.len.versicolor$Sepal.Length)
sepal.len.virginica <- iris[which(iris$Species == "virginica"),]
virginica <- density(sepal.len.virginica$Sepal.Length)
# plot density curves
fig <- plot_ly(x = ~virginica$x, y = ~virginica$y,
type = 'scatter', mode = 'lines',
name = 'virginica',
fill = 'tozeroy') %>%
# adding more density curves
add_trace(x = ~versicolor$x, y = ~versicolor$y,
name = 'versicolor', fill = 'tozeroy') %>%
add_trace(x = ~setosa$x, y = ~setosa$y,
name = 'setosa', fill = 'tozeroy') %>%
layout(xaxis = list(title = 'Sepal Length'),
yaxis = list(title = 'Density'))
fig
```
# Searchable Data Table
```{r eval=requireNamespace("DT", quietly=TRUE)}
DT::datatable(head(mtcars), fillContainer = FALSE, options = list(pageLength = 4))
```