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1 Introduction
The general purpose of multiple linear regression (MLR) is to identify a relationship in an explicit functional
form between explanatory variables or predictors and the dependent response variable. This relationship will
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be used to achieve two primary tasks:

• Association analysis - understanding the association between predictors and the response variable.
As a special association, the causal relationship can be assessed under certain conditions.

• Prediction - the relationship between predictors and the response can be used to predict the response
with new out-of-sample values of predictors.

2 The structure of MLR
Let {x1, x2, · · · , xk} be k explanatory variables and y be the response variables. The general form of the
multiple linear regression model is defined as

y = β0 + β1x1 + β2x2 + · · · + βkxk + ϵ.

This is a very special form in that y is linear in both parameters and predictors. The actual linear regression
only assumes that y is linear only in parameters but not predictors since the value of predictors will be
observed in data.

2.1 Assumptions based on the above special form.
• The function form between y and {x1, x2, · · · , xk} must be correctly specified.
• The residual ϵ must be normally distributed with µ = 0 and a constant variance σ2.
• An implicit assumption is that predictor variables are non-random.

2.2 Potential Violations
There are various potential violations of the model assumptions. The following is a shortlist of potential
violations of the model assumptions.

• The potential incorrect functional relationship between the response and the predictor variables.
– the correct form may have power terms.
– the correct form may have a cross-product form.
– the correct form may need important variables that are missing.

• The residual term does not follow the normal distribution N(0, σ2). That means that
– ϵ is not normally distributed at all.
– ϵ is normally distributed but the variance is not a constant.

2.3 Variable types
Since there will be multiple variables involved in the multiple regression model.

• All explanatory variables are continuous variables - classical linear regression models.

• All explanatory variables are categorical variables - analysis of variance (ANOVA) models.

• The model contains both continuous and categorical variables - analysis of covariance (ANCOVA)
model.

2.4 Dummy and discrete numerical explanatory variables
• Categorical variables with n (n > 2) categories MUST be dichotomized into n − 1 dummy variables

(binary indicator variables).
– Caution: categorical variable with a numerical coding - need to use R function factor() to

automatically define a sequence of dummy variables for the category variable.
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• Discrete (numerical) variable - If we want to use discrete numerical as a categorical variable, we
must dichotomize it and define a sequence of dummy variables since interpretations of the two types of
variables are different. In a categorical variable case, the coefficient of a dummy variable is the relative
contribution to the response compared with the baseline category. In the discrete case, the regression
coefficient is the relative contribution to the response variable compared with adjacent values and the
relative contribution is constant across all adjacent values of the discrete predictor variable.

2.5 Interpretation of Regression Coefficients
A _multiple linear regression model with k predictor variables has k+1 unknown parameters: intercept
parameters (β0), slope parameters (βi, i = 1, 2, · · · , k), and the variance of the response variable (σ2). The key
parameters of interest are the slope parameters since they capture the information on whether the response
variable and the corresponding explanatory variables are (linearly) associated.

• If y and xi are not linearly associated, that is, βi = 0, i = 1, 2, · · · , k, then β0 is the mean of y.

• If βi > 0, then y and xi are positively linearly correlated. Furthermore, βi is the increment of the
response when the explanatory variable increases by one unit.

• We can similarly interpret βi when it is negative.

3 Model building
Modeling building is an iterative process for searching for the best model to fit the data. An implicit
assumption is that the underlying data is statistically valid.

3.1 Data structure, sample size, and preparation for MLR
In the model-building phase, we assume data is valid and has sufficient information to address the research
hypothesis.

• Data records are independent - collected based on a cross-sectional design.

• The sample size should be large enough such that each regression coefficient should have 14 distinct
data points to warrant reliable and robust estimates of regression coefficients.

• Imbalanced categorical variables and extremely distributed continuous explanatory variables need to
be treated to a warrant valid estimate of regression coefficients. This includes combining categories in
meaningful and practically interpretable ways and discretizing extremely skewed continuous variables.

• New variable definition - sometimes we can extract information from several variables to define new
variables to build a better model. This is an active area in machine learning fields and data science.
There are many different methods and algorithms in literature and practice for creating new variables
based on existing ones.

– Empirical approach - based on experience and numerical pattern.
– Model-based approach - this may require a highly technical understanding of algorithms and

modeling ideas. This is not the main consideration in this course.

3.2 Candidate models and residual diagnostics
• Consider only the multiple linear regression models that have a linear relationship between response

and predictor variables.

• Perform residual analysis

– if a curve pattern appears in residual plots, identify a curve linear relationship between the response
and the individual predictor variable
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– if non-constant variance appears in the residual plots, then perform an appropriate transformation
to stabilize the constant variance - for example, Box-cox transformation.

– if the QQ plot indicates non-normal residuals, try transformations to convert it to a normal
variable.

– if there are serial patterns in the residual plot, we need to remove the serial pattern with an
appropriate method.

– if some clusters appear in the residual plot, create a group variable to capture the clustering
information.

3.3 Significant test, goodness-of-fit, and Variable selection
Significant tests and goodness-of-fit measures are used to identify the final model. Please keep in mind that a
good statistical model must have the following properties;

• Interpretability

• parsimony

• Accuracy

• Scalability

3.3.1 Significant Tests

Significant tests are used for selecting statistically significant variables to include in the model. However, in
practical applications, some practically important variables should always be included in the model regardless
of their statistical significance. The t-test is used for selecting (or dropping) individual statistically significant
variables.

3.3.2 Variable (model) selection criteria - Goodness-of-fit Measures

There are many different methods based on different performance measures for model selection. Most of these
goodness-of-fit measures are defined based on sum of squares that defined in the following (use SLR for
illustration)

Figure 1: Definitions of sum od squares

• R2 - coefficient of determination. It explains the variation explained by the underlying regression model.
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R2 = SSR

SST
= 1 − SSE

SST

R2 is used to compare two candidate models. Adjusted R2 is used when there are many predictor variables
in the model. It is defined by

R2
adj = 1 − n − 1

n − p

SSE

SST

• Information criteria - likelihood-based measures: AIC and SBC.

AICp = n ln(SSE) − n ln(n) + 2p

BICp = n ln(SSE) − n ln(n) + p ln(n)

• The prediction sum of squares (PRESS) is a model validation method used to assess a model’s
predictive ability that can also be used to compare regression models. It is defined based on an iterative
algorithm - Leave-on-out (a special Jackknife resampling method to be discussed in the next module).

• Likelihood ratio χ2 test - comparing two candidate models with a hierarchical relationship.

• Mallow’s Cp - a residual-based measure that is used for comparing two models that do not necessarily
have a hierarchical structure.

3.3.3 Variable selection methods

• Step-wise Procedures

• Criterion-based procedures

This short note summarized the above two methods for Variable Selection(click the link to view the text).

3.4 Multicollinearity Detection - VIF
As the name suggests, a variance inflation factor (VIF) quantifies how much the variance is inflated. A
variance inflation factor exists for each of the predictors in a multiple regression model. For example, the
variance inflation factor for the estimated regression coefficient bj —denoted V IFj —is just the factor by
which the variance of bj is “inflated” by the existence of correlation among the predictor variables in the
model. To be more specific, the VIF of j-th predictor is defined to be

VIFj = 1
1 − R2

j

Where R2
j is the coefficient of determination of of regression E(xj) = α0 +α1x1 + · · ·+αj−1xj−1 +αj+1xj+1 +

· · · + αkxk.

A VIF of 1 means that there is no correlation among the jth predictor and the remaining predictor variables,
and hence the variance of bj is not inflated at all. The general rule of thumb is that VIFs exceeding 4 warrant
further investigation, while VIFs exceeding 10 are signs of serious multicollinearity requiring correction.

R function in the machine learning library {car}(classification and regression) can be used to calculate the
variance inflation factor for individual predictor.

4 Case Study - Factors That Affect House-Sale Prices
We present a case study to implement various model-building techniques.
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4.1 Data Description
The data in this note was found from Kaggle. I renamed the original variables and modified the sales
dates to define the sales year indicator. The modified data set was uploaded to the course web page at
https://raw.githubusercontent.com/pengdsci/sta321/main/ww03/w03-Realestate.csv.

• ObsID
• TransactionYear(X1): transaction date
• HouseAge(X2): house age

• Distance2MRT(X3): distance to the nearest MRT station
• NumConvenStores(X4): number of convenience stores
• Latitude(X5): latitude

• Longitude(X6): longitude

• PriceUnitArea(Y): house price of unit area

4.2 Practical Question
The primary question is to identify the association between the house sale price and relevant predictor
variables available in the data set.

4.3 Exploratory Data Analysis
We first explore the pairwise association between the variables in the data set. Since longitude and latitude
are included in the data set, we first make a map to see if we can define a variable according to the sales
based on the geographic regions.

To start, we load the data to R.
realestate0 <- read.csv("https://raw.githubusercontent.com/pengdsci/sta321/main/ww03/w03-Realestate.csv", header = TRUE)
realestate <- realestate0[, -1]
# longitude and latitude will be used to make a map in the upcoming analysis.
lon <- realestate$Longitude
lat <- realestate$Latitude
plot(lon, lat, main = "Sites of houses sold in 2012-2013")
abline(v=121.529, h=24.96, col="red", lty=2)
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We use longitude and latitude to define a group variable, geo.group, in the following.

geo.group = TRUE if longitude > 121.529 AND latitude > 24.96; geo.group = FALSE otherwise.

From the map representation of the locations of these houses given below (generated by Tableau Public), we
can see that geo. group is an indicator

Figure 2: Locations of houses for sale

We also turn the variable TransactionYear into an indicator variable. At the same time, we scale the
distance from the house to the nearest MRT by defining Dist2MRT = Distance2MRT/1000.
geo.group = (lon > 121.529) & (lat > 24.96) # define the geo.group variable

# top-right region = TRUE, other region = FALSE
realestate$geo.group = as.character(geo.group) # convert the logical values to character values.
realestate$sale.year = as.character(realestate$TransactionYear) # convert transaction year to dummy.
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realestate$Dist2MRT.kilo = (realestate$Distance2MRT)/1000 # re-scale distance: foot -> kilo feet
final.data = realestate[, -c(1,3,5,6)] # keep only variables to be used in the candidate

# models
kable(head(final.data))

HouseAge NumConvenStores PriceUnitArea geo.group sale.year Dist2MRT.kilo
32.0 10 37.9 TRUE 2012 0.0848788
19.5 9 42.2 TRUE 2012 0.3065947
13.3 5 47.3 TRUE 2013 0.5619845
13.3 5 54.8 TRUE 2013 0.5619845
5.0 5 43.1 TRUE 2012 0.3905684
7.1 3 32.1 FALSE 2012 2.1750300

4.4 Fitting MLR to Data
We start the search process for the final model.

4.4.1 Full model and diagnostics

We start with a linear model that includes all predictor variables.
full.model = lm(PriceUnitArea ~ ., data = final.data)
kable(summary(full.model)$coef, caption ="Statistics of Regression Coefficients")

Table 2: Statistics of Regression Coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.9559432 1.7134680 20.984310 0.0000000
HouseAge -0.3000749 0.0390329 -7.687735 0.0000000
NumConvenStores 1.0707846 0.1897962 5.641761 0.0000000
geo.groupTRUE 7.5447005 1.3420266 5.621871 0.0000000
sale.year2013 3.0332784 0.9447021 3.210831 0.0014283
Dist2MRT.kilo -3.6589504 0.5317107 -6.881469 0.0000000

Next, we conduct residual diagnostic analysis to check the validity of the model before making an inference
about the model.
par(mfrow=c(2,2))
plot(full.model)

We can see from the residual plots that there are some minor violations:

• the variance of the residuals is not constant.

• the QQ plot indicates the distribution of residuals is slightly off the normal distribution.

• The residual plot seems to have a weak curve pattern.

We first perform Box-Cox transformation to correct the non-constant variance and correct the non-normality
of the QQ plot.
vif(full.model)

## HouseAge NumConvenStores geo.group sale.year Dist2MRT.kilo
## 1.046784 1.654506 2.208128 1.002674 2.383978
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Figure 3: Residual plots of the full model
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The VIF indices show that there is no significant issues on multicollinearity. We can also make a bar plot for
the VIFs.
#create horizontal bar chart to display each VIF value
barplot(vif(full.model), main = "VIF Values", horiz = FALSE, col = "steelblue")

HouseAge geo.group sale.year Dist2MRT.kilo

VIF Values

0.
0

0.
5

1.
0

1.
5

2.
0

4.4.2 Models Based on Box-Cox transformation

We first perform Box-Cox transformation and then choose appropriate transformations for both response and
predictor variables to build candidate regression models.

4.4.2.1 Box-Cox Transformations Since non-constant variance, we perform the Box-Cox procedure to
search for a transformation of the response variable. We perform several tried Box-Cox transformations with
different transformed
par(pty = "s", mfrow = c(2, 2), oma=c(.1,.1,.1,.1), mar=c(4, 0, 2, 0))
##
boxcox(PriceUnitArea ~ HouseAge + NumConvenStores + sale.year + log(Dist2MRT.kilo)

+ geo.group, data = final.data, lambda = seq(0, 1, length = 10),
xlab=expression(paste(lambda, ": log dist2MRT")))

##
boxcox(PriceUnitArea ~ HouseAge + NumConvenStores + sale.year + Dist2MRT.kilo +

geo.group, data = final.data, lambda = seq(-0.5, 1, length = 10),
xlab=expression(paste(lambda, ": dist2MRT")))

##

10



boxcox(PriceUnitArea ~ log(1+HouseAge) + NumConvenStores + sale.year + Dist2MRT.kilo +
geo.group, data = final.data, lambda = seq(-0.5, 1, length = 10),
xlab=expression(paste(lambda, ": log-age")))

##
boxcox(PriceUnitArea ~ log(1+HouseAge) + NumConvenStores + sale.year + log(Dist2MRT.kilo) +

geo.group, data = final.data, lambda = seq(-0.5, 1, length = 10),
xlab=expression(paste(lambda, ": log-age, log.dist2MRT")))
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The above Box-cox transformation plots indicate the optimal λ under different transformed predictor variables.
log-Transformed distance from MRT impacts the coefficient of the power transformation: λ.

As a special power transformation, if λ = 0, the transformation degenerates to log transformation.

4.4.2.2 Square-root Transformation We perform Box-Cox transformation with log-transformed dis-
tance to the nearest MRT in the following.
sqrt.price.log.dist = lm((PriceUnitArea)ˆ0.5 ~ HouseAge + NumConvenStores + sale.year + log(Dist2MRT.kilo) + geo.group, data = final.data)
kable(summary(sqrt.price.log.dist)$coef, caption = "log-transformed model")
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Table 3: log-transformed model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.3978808 0.0923831 58.429342 0.0000000
HouseAge -0.0209198 0.0029561 -7.076954 0.0000000
NumConvenStores 0.0513220 0.0153946 3.333767 0.0009351
sale.year2013 0.2951406 0.0707905 4.169214 0.0000374
log(Dist2MRT.kilo) -0.4905637 0.0481611 -10.185897 0.0000000
geo.groupTRUE 0.5709120 0.0973966 5.861723 0.0000000

Residual plots are given below.
par(mfrow = c(2,2))
plot(sqrt.price.log.dist)
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There are two improvements in the above residual diagnostic plots: (1) the weak curve pattern has been
removed from the residual plot; (2) the non-constant variance has also been corrected. However, the violation
of the normality assumption is still an issue.

4.4.2.3 Log-Transformation We take the log transformation of the sale price according to the Box-Cox
transformation and then build a linear regression based on the log price.
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log.price = lm(log(PriceUnitArea) ~ HouseAge + NumConvenStores + sale.year + Dist2MRT.kilo + geo.group, data = final.data)
kable(summary(log.price)$coef, caption = "log-transformed model")

Table 4: log-transformed model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5724282 0.0443235 80.599030 0.0000000
HouseAge -0.0075712 0.0010097 -7.498507 0.0000000
NumConvenStores 0.0274872 0.0049096 5.598667 0.0000000
sale.year2013 0.0805519 0.0244373 3.296272 0.0010655
Dist2MRT.kilo -0.1445122 0.0137541 -10.506820 0.0000000
geo.groupTRUE 0.1825871 0.0347151 5.259583 0.0000002

Residual plots are given below.
par(mfrow = c(2,2))
plot(log.price)
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The above residual diagnostic plots are similar to that of the previous model. The Q-Q plots of all three
models are similar to each other, this means that the assumption of normal residuals is not satisfied for all
three models.
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#define plotting area
par(pty = "s", mfrow = c(1, 3))
#Q-Q plot for original model
qqnorm(full.model$residuals, main = "Full-Model")
qqline(full.model$residuals)
#Q-Q plot for Box-Cox transformed model
qqnorm(log.price$residuals, main = "Log-Price")
qqline(log.price$residuals)
#display both Q-Q plots
qqnorm(sqrt.price.log.dist$residuals, main = "sqrt price log dist")
qqline(sqrt.price.log.dist$residuals)
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4.4.2.4 Goodness-of-fit Measures Next, we extract several other goodness-of-fit from each of the three
candidate models and summarize them in the following table.
select=function(m){ # m is an object: model
e = m$resid # residuals
n0 = length(e) # sample size
SSE=(m$df)*(summary(m)$sigma)ˆ2 # sum of squared error
R.sq=summary(m)$r.squared # Coefficient of determination: R square!
R.adj=summary(m)$adj.r # Adjusted R square
MSE=(summary(m)$sigma)ˆ2 # square error
Cp=(SSE/MSE)-(n0-2*(n0-m$df)) # Mellow's p
AIC=n0*log(SSE)-n0*log(n0)+2*(n0-m$df) # Akaike information criterion
SBC=n0*log(SSE)-n0*log(n0)+(log(n0))*(n0-m$df) # Schwarz Bayesian Information criterion
X=model.matrix(m) # design matrix of the model
H=X%*%solve(t(X)%*%X)%*%t(X) # hat matrix
d=e/(1-diag(H))
PRESS=t(d)%*%d # predicted residual error sum of squares (PRESS)- a cross-validation measure
tbl = as.data.frame(cbind(SSE=SSE, R.sq=R.sq, R.adj = R.adj, Cp = Cp, AIC = AIC, SBC = SBC, PRD = PRESS))
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names(tbl)=c("SSE", "R.sq", "R.adj", "Cp", "AIC", "SBC", "PRESS")
tbl
}

CAUTION: SSE, AIC, SBC, and PRESS are dependent on the magnitude of the response. R2, R2
adj, and

Cp are scaled (index-like measure) and therefore independent on the magnitude of Response. This means that
models with transformed response and those with the original magnitude can NOT be compared using SSE,
AIC, SBC, and PRESS!

In the following table, three models have different magnitudes due to different transformations,
the valid goodness of fit measures are R2, R2

adj, and Cp!
output.sum = rbind(select(full.model), select(sqrt.price.log.dist), select(log.price))
row.names(output.sum) = c("full.model", "sqrt.price.log.dist", "log.price")
kable(output.sum, caption = "Goodness-of-fit Measures of Candidate Models")

Table 5: Goodness-of-fit Measures of Candidate Models

SSE R.sq R.adj Cp AIC SBC PRESS
full.model 31831.19255 0.5836958 0.5785940 6 1809.7271 1833.8823 32792.58816
sqrt.price.log.dist 177.56943 0.6587132 0.6545308 6 -338.4528 -314.2976 182.95839
log.price 21.29945 0.6651882 0.6610851 6 -1216.4146 -1192.2594 21.94809

We can see from the above table that the goodness-of-fit measures (R2, R2
adj, and Cp) of the third model are

better than the other two models. Considering the interpretability, goodness-of-fit, and simplicity, we choose
the last model as the final model.

4.4.3 Final Model

The inferential statistics of the final working model are summarized in the following table.
kable(summary(log.price)$coef, caption = "Inferential Statistics of Final Model")

Table 6: Inferential Statistics of Final Model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5724282 0.0443235 80.599030 0.0000000
HouseAge -0.0075712 0.0010097 -7.498507 0.0000000
NumConvenStores 0.0274872 0.0049096 5.598667 0.0000000
sale.year2013 0.0805519 0.0244373 3.296272 0.0010655
Dist2MRT.kilo -0.1445122 0.0137541 -10.506820 0.0000000
geo.groupTRUE 0.1825871 0.0347151 5.259583 0.0000002

Since the sample size (414) is large, the argument for validating p-values is the Central Limit Theorem (CLT).
all p-values are close to 0 meaning that all coefficients are significantly different from 0.

In this specific case study, there is no need to perform variable selection to determine the final model.

4.5 Summary of the model
We can explicitly write the final model in the following

log(price) = 3.5723 − 0.0076 × HouseAge + 0.0275 × NumConvenStores+
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0.0805 × Sale.year2013 − 0.1445 × Dist2MRT.kilo + 0.1826 × geo.groupTRUE

Note that the estimated regression coefficients are based on log price. we now consider the set of all houses
with ages x0 and x0 + 1 that are in the same conditions except for the sale prices. The exact practical
interpretation is given below. Let px0 and px0+1 be the mean prices of houses with ages x0 and x0 + 1,
respectively. Since the two types of houses are in the same conditions except for the age and the prices. Then

log(px0+1) − log(px0) = −0.0076 → log(px0+1/px0) = −0.0076 → px0+1 = 0.9924px0

We re-express the above equation can be re-written as

px0+1 − px0 = −0.0076px0 → px0+1 − px0

px0

= −0.076 = −0.76%

That is, as the house age increases by one year, the house price decreases by 0.76%. We can similarly
interpret other regression coefficients.

The distance to the nearest MRT is also negatively associated with the sale price. The rest of the factors are
positively associated with house prices.

4.6 Discussions
We use various regression techniques such as Box-Cox transformation for response variables and other
transformations of the explanatory variables to search for the final model in the case study. Since there are
five variables in the data set and all are significant, we did not perform any variable selection procedure.

All candidate models have the same number of variables. We use commonly-used global goodness-of-fit
measures as model selection criteria.

The interpretation of the regression coefficients is not straightforward since the response variable was
transformed into a log scale. We used some algebra to derive the practical interpretation of the regression
coefficients associated with the variables at their original scales.

The violation of the normal assumption of the residuals remains uncorrected. The inference on the regression
coefficients is based on the central limit theorem. We will introduce bootstrap methods to construct bootstrap
confidence intervals of the regression coefficients of the final model.

16


	Introduction
	The structure of MLR
	Assumptions based on the above special form.
	Potential Violations
	Variable types
	Dummy and discrete numerical explanatory variables
	Interpretation of Regression Coefficients

	Model building
	Data structure, sample size, and preparation for MLR
	Candidate models and residual diagnostics
	Significant test, goodness-of-fit, and Variable selection
	Significant Tests
	Variable (model) selection criteria - Goodness-of-fit Measures
	Variable selection methods

	Multicollinearity Detection - VIF

	Case Study - Factors That Affect House-Sale Prices
	Data Description
	Practical Question
	Exploratory Data Analysis
	Fitting MLR to Data
	Full model and diagnostics
	Models Based on Box-Cox transformation
	Box-Cox Transformations
	Square-root Transformation
	Log-Transformation
	Goodness-of-fit Measures

	Final Model

	Summary of the model
	Discussions


