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1 Introduction
In this note, we first introduce the bootstrap regression model through sampling residuals. The resulting
bootstrap confidence intervals of regression coefficients will be included in the inference table of the output of
lm().

We will use some R functions to create nice-looking tables to be used in any professional reports.

2 Concept of Bootstrap Residuals
Bootstrapping residuals is another way to generate bootstrap random samples that are supposed to have the
same distribution as that Y in the original random sample. The following flow chart explains the process of
how to generate bootstrap random samples.

Next, we use a simple to demonstrate the steps to generate bootstrap samples based on sampling bootstrap
residuals. The data set at https://raw.githubusercontent.com/pengdsci/sta321/main/ww03/handheight.txt
has three variables: sex, height, and hand span. We will this data set to assess the linear correlation between
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height and hand span. We first do some exploratory analysis to visualize the potential association between
height and hand size.
handheight = read.table("https://online.stat.psu.edu/stat501/sites/stat501/files/data/handheight.txt", header = TRUE)
MID = which(handheight$Sex=="Male")
MaleData = handheight[MID,]
FealeData = handheight[-MID,]
plot(handheight$Height, handheight$HandSpan, pch=16, col="white",

xlab = "Hand Span",
ylab = "Height",
main = "Hand Span vs Height",
col.main = "navy",
cex.main = 0.8,
bty="n")

points(handheight$Height[MID], handheight$HandSpan[MID], pch=16, col=alpha("darkred", 0.5))
points(handheight$Height[-MID], handheight$HandSpan[-MID], pch=19, col=alpha("blue", 0.5))
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3 Implementing Bootstrapping Residuals
The following code reflects the steps in the above flow-chart
height = handheight$Height
handspan = handheight$HandSpan

2



m0 = lm(height~handspan)
E = resid(m0) # Original residuals
a.hat = coef(m0)[1]
b.hat = coef(m0)[2]
##
B = 1000 # generating 1000 bootstrap samples
bt.alpha = rep(0, B)
bt.beta = bt.alpha
for(i in 1:B){

bt.e = sample(E, replace = TRUE) # bootstrap residuals
y.hat = a.hat + b.hat*handspan + bt.e # bootstrap heights
## bootstrap SLR
bt.m = lm(y.hat ~ handspan)
bt.alpha[i] = coef(bt.m)[1]
bt.beta[i] = coef(bt.m)[2]

}
alpha.CI = quantile(bt.alpha, c(0.025, 0.975))
beta.CI = quantile(bt.beta, c(0.025, 0.975))
##
per.025 = c(alpha.CI[1],beta.CI[1]) # lower CI for alpha and beta
per.975 = c(alpha.CI[2],beta.CI[2]) # upper CI for alpha and beta

Next, we add the confidence limits to the output inferential table from the SLR based on the original sample.
lm.inference = as.data.frame((summary(m0))$coef)
lm.inference$per.025 = per.025
lm.inference$per.975 = per.975
kable(as.matrix(lm.inference))

Estimate Std. Error t value Pr(>|t|) per.025 per.975
(Intercept) 35.52504 2.3159512 15.33929 0 31.008825 39.954680
handspan 1.56008 0.1105437 14.11278 0 1.347388 1.771739
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