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1 Introduction

The bootstrap method is a data-based simulation method for statistical inference. The method assumes that
* The sample is a random sample that represents the population. * The sample size is large enough such that
the empirical distribution is close to the true distribution. # Basic Idea of Bootstrap Method. The objective
is to estimate a population parameter such as mean, variance, correlation coefficient, regression coefficients,
etc. from a random sample without assuming any probability distribution of the underlying distribution of
the population. For convenience, we assume that the population of interest has a cumulative distribution
function F(z : 6), where 6 is a vector of the population. For example, You can think about the following
distributions

e Normal distribution: N(u,0?), the distribution function is given by

where 0 = (u,0). Since the normal distribution is so fundamental in statistics, we use the special
notation for the cumulative distribution ¢,, 52 (x) or simply ¢(z). The corresponding probability function

o Binomial distribution: Binom(n,p), the probability distribution is given by

n!

P(z) P (1—p)" 2 =0,1,2,--- ,n—1,n,

- z!(n — x)
where 0 = p. Caution: n is NOT a parameter!
We have already learned how to make inferences about population means and variances under various

assumptions in elementary statistics. In this note, we introduce a new approach to making inferences only
based on a given random sample taken from the underlying population.



As an example, we focus on the population mean. For other parameters, we can follow the same idea to make
bootstrap inferences.

1.1 Random Sample from Population

We have introduced various study designs and sampling plans to obtain random samples from a given
population with the distribution function F'(x : 6). Let u be the population means.

« Random Sample. Let
{z1,29,  ,2n} = F(x:0)

be a random sample from population F(x : 6).
e Sample Mean. The point estimate is given by
n
ﬂ _ ZiZI Li
n

e Sampling Distribution of . In order to construct the confidence interval of p or make hypothesis
testing about p, we need to know the sampling distribution of ji. From elementary statistics, we have
the following results.

— [iis normally distributed if (1). n is large; or (2). the population is normal and population variance
is known.

— the standardized i follows a t-distribution if the population is normal and population variance is
unknown.

— [i is unknown of the population is not normal and the sample size is not large enough.

o In the last case of the previous bullet point, we don’t have the theory to derive the sampling distribution
based on a single sample. However, if the sampling is not too expensive and time-consuming, we take
following the sample study design and sampling plan to repeatedly take a large number, 1000, samples
of the same size from the population. We calculate the mean of each of the 1000 samples and obtain
1000 sample means {fi1, fia, - , fi1000 }- Then the empirical distribution of fi.

The following figure depicts how to approximate the sampling distribution of the point estimator of the
population parameter.
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Figure 1: Steps for estimating the sampling distribution of a point estimator of the population parameter

Example 1: [Simulated data] Assume that the particular numeric characteristics of the WCU student
population are the heights of all students.

o We don’t know the distribution of the heights.



o We also don’t know whether a specific sample size is large enough to use the central limit theorem. This
means we don’t know whether it is appropriate to use the central limit theorem to characterize the
sampling distribution of the mean height.

Due to the above constraints, we cannot find the sampling distribution of the sample means using only the
knowledge of elementary statistics. However, if sampling is not expensive, we take repeated samples with the
same sample size. The resulting sample means can be used to approximate the sampling distribution of the
sample mean.

Next, we use R and the simulated data set https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/
w02-wcuheights.txt to implement the above idea. I will use simple code with comments to explain the task of

each line of code so you can easily understand the coding logic.

# read the delimited data from URL

wcu.height = read.table("https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-wcuheights.txt

sample.mean.vec = NULL # define an empty vector to hold sample means of repeated samples.
for(i in 1:1000){ # starting for-loop to take repeated random samples with n = 81
ith.sample = sample( wcu.height$Height, # population of all WCU students heights
81, # sample size = 81 wvalues in the sample

replace = FALSE # sample without replacement
) # this s the i-th random sample
sample.mean.vec[i] = mean(ith.sample) # calculate the mean of i-th sample and save it in
# the empty wvector: sample.mean.vec
X
Next, we make a histogram of the sample means saved in sample.mean.vec.
hist(sample.mean.vec, # data used for histogram
breaks = 14, # spectfy number of wvertical bars
xlab = "sample means of repeated samples", # change the label of z-azis

main="Approximated Sampling Distribution \n of Sample Means") # add a title to the histogram
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Figure 2: Approximated sampling distribution of sample mean used the repeated samples.


https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-wcuheights.txt
https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-wcuheights.txt

1.2 Bootstrap Sampling and Bootstrap Sampling Distribution

Recall the situation in Example 1 in which we were not able to use the normality assumption of the population
and the central limit theorem (CLT) but were allowed to take repeated samples from the population. In
practice, taking samples from the population can be very expensive. Is there any way to estimate the sampling
distribution of the sample means? The answer is YES under the assumption the sample yields a valid
estimation of the original population distribution.

e Bootstrap Sampling with the assumption that the sample yields a good approximation of the
population distribution, we can take bootstrap samples from the actual sample. Let

{z1,29,  ,xn} = F(x:0)

be the actual random sample taken from the population. A bootstrap sample is obtained by taking a
sample with replacement from the original data set (not the population!) with the same size as the
original sample. Because with replacement was used, some values in the bootstrap sample appear
once, some twice, and so on, and some do not appear at all.

e Notation of Bootstrap Sample. We use {x(li*),xg*), e ,wg*)} to denote the i*" bootstrap sample.
Then the corresponding mean is called bootstrap sample mean and denoted by fi}, for i = 1,2, ..., n.

e Bootstrap sampling distribution of the sample mean can be estimated by taking a large number,
say B, of bootstrap samples. The resulting B bootstrap sample means are used to estimate the sampling
distribution. Note that, in practice, B is bigger than 1000.

The above Bootstrap sampling process is illustrated in the following figure.
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Figure 3: Steps for the Bootstrap sampling distribution of a point estimator of the population parameter

o Example 2: [continue to use WCU Heights]. We use the Bootstrap method to estimate the
sampling distribution of the sample means.
### read the delimited data from URL
wcu.height = read.table("https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-wcuheights.txt
# taking the original random sample from the population
original.sample = sample( wcu.height$Height, # population of all WCU students heights

81, # sample size = 81 wvalues in the sample
replace = FALSE # sample without replacement
)
### Bootstrap sampling begins
bt.sample.mean.vec = NULL # define an empty wvector to hold sample means of repeated samples.
for(i in 1:1000){ # starting for-loop to take bootstrap samples with n = 81
ith.bt.sample = sample( original.sample, # Original sample with 81 WCU students' heights
81, # sample size = 81 MUST be equal to the sample size!!
replace = TRUE # MUST use WITH REPLACEMENT!!



) # thts is the i-th Bootstrap sample
bt.sample.mean.vec[i] = mean(ith.bt.sample) # calculate the mean of i-th bootstrap sample and
# save 1t in the empty vector: sample.bt.mean.vec

X
The following histogram shows the bootstrap sampling distribution of sample means with size n = 81.
hist(bt.sample.mean.vec, # data used for histogram
14, # specify number of wvertical bars
"Bootstrap sample means", # change the label of z-azis

"Bootstrap Sampling Distribution \n of Sample Means") # add a title to the histogram
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Figure 4: Bootstrap sampling distribution of sample means

1.3 Relationship between Two Estimated Sampling Distributions

We can see that the two sampling distributions are slightly different. If we are allowed to take repeated
samples from the population, we should always use the repeated sample approach since it yields a better
estimate of the true sampling distribution.

The bootstrap estimate of the sampling distribution is used when no theoretical confidence intervals are
available and the repeated sample is not possible due to certain constraints. This does not mean that the
bootstrap methods do not have limitations. In fact, the implicit assumption of the bootstrap method is that
the original sample has enough information to estimate the true population distribution.

2 Bootstrap Confidence Intervals

First of all, all bootstrap confidence intervals are constructed based on the bootstrap sampling distribution of
the underlying point estimator of the parameter of interest.

There are at least five different bootstrap confidence intervals. You can find these definitions from Chapter 4
of Roff’s eBook https://ebookcentral.proquest.com/lib/wcupa/reader.action?docID=261114&ppg=7 (need
WCU login credential to access the book). We only focus on the percentile method in which we simply define
the confidence limit(s) by using the corresponding percentile(s) of the bootstrap estimates of the parameter
of interest. R has a built-in function, quantile(), to find percentiles.


https://ebookcentral.proquest.com/lib/wcupa/reader.action?docID=261114&ppg=7

o Example 3: We construct a 95% two-sided bootstrap percentile confidence interval of the mean height
of WCU students. This is equivalent to finding the 2.5% and 97.5% percentiles. We use the following
one-line code.

CI = quantile(bt.sample.mean.vec, c(0.025, 0.975))
CI

#it 2.5% 97.5Y,
## 69.43179 70.92593

#kable(CI, caption = "95) bootstrap percentile confidence interval of the mean height")

Various bootstrap methods were implemented in the R library {boot}. UCLA Statistical Consulting
https://stats.idre.ucla.edu/r/faq/how-can-i-generate-bootstrap-statistics-in-r/ has a nice tutorial on
bootstrap confidence intervals. You can use the built-in function boot.ci() to find all 5 bootstrap confidence
intervals after you create the boot object. I will leave it to you if you want to explore more about the library.

3 Bootstrap Confidence Interval of Correlation Coefficient

As a case study, we will illustrate one bootstrap method to sample a random sample with multiple variables
and use the bootstrap samples to calculate the corresponding bootstrap correlation coefficient. The bootstrap
percentile confidence interval of the correlation coefficient.

3.1 Bootstrapping Data Set

There are different ways to take bootstrap samples. The key point is that we cannot sample individual
variables in the data frame separately to avoid mismatching! The method we introduce here is also
called bootstrap sampling cases. Here are the basic steps:

o Assume the data frame haven rows. We define the vector of row ID. That is, ID = {1,2,3,...,n}.

o Take a bootstrap sample from ID (i.e., sampling with replacement) with same size = n, denoted by
ID*. As commented earlier, there will be replicates of ID* and some values in I D are not in I1D*.

e Use ID* to select the corresponding rows to form a bootstrap sample and then perform bootstrap
analysis.
Here is an example of taking the bootstrap sample from the original sample with multiple variables. The
data set we use here is well-known and is available at https://raw.githubusercontent.com/pengdsci/sta321/
main/ww02/w02-iris.txt
# read data into R from the URL
iris = read.table("https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-iris.txt",

n = dim(iris) [1] # returns the dimension of the data frame, 1st component is the number of rows
bt.ID = sample(l:n, TRUE) # bootstrap IDs, MUST use replacement method!
sort (bt.ID) # check the content of bt.ID. I sort the bt.ID to see replicate easily

#i# [1] 2 2 2 2 3 5 65 6 7 T 8 10 11 12 13 15 16 20
## [19] 20 20 21 21 22 22 23 24 24 25 25 26 27 28 29 29 31 35
## [37] 37 37 39 39 41 42 42 43 43 45 45 45 49 50 52 54 55 56
## [55] 56 57 61 62 62 63 63 64 64 64 65 67 68 69 70 72 T3 T4
## [73] 74 75 75 77 78 78 79 80 80 82 82 82 83 85 86 87 87 88
## [91] 88 91 92 93 93 95 95 95 97 100 101 101 103 103 104 104 106 109
## [109] 110 111 112 112 113 114 114 115 116 116 117 118 119 120 120 120 120 122
## [127] 123 124 126 129 130 131 132 132 134 135 135 136 138 138 138 140 140 140
## [145] 141 142 143 143 148 148

Next, we use the above bt.ID to take the bootstrap sample from the original data set iris.


https://stats.idre.ucla.edu/r/faq/how-can-i-generate-bootstrap-statistics-in-r/
https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-iris.txt
https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-iris.txt

bt.iris = iris[bt.ID,] # taking bootstrap cases (or rows, records) using the bt.ID
bt.iris # display the bootstrap sample

3.2 Confidence Interval of Coeflicient Correlation

In this section, we construct a 95% bootstrap percentile confidence interval for the coefficient correlation
between the SepalLength and SepalWidth given in iris. Note that R built-in function cor(x,y) can be used
to calculate the bootstrap correlation coefficient directly. The R code for constructing a bootstrap confidence
interval for the coefficient correlation is given below.

iris = read.table("https://raw.githubusercontent.com/pengdsci/sta321/main/ww02/w02-iris.txt", header =

n = dim(iris) [1] # returns the dimension of the data frame, 1st component is the number of rows
##
bt.cor.vec = NULL # empty wvector bootstrap correlation coefficients

for (i in 1:5000){ # this time I take 5000 bootstrap samples for this example.
bt.ID.i = sample(l:n, replace = TRUE) # bootstrap IDs, MUST use replacement method!
bt.iris.i = iris[bt.ID.i, ] # i-th bootstrap ID
bt.cor.vec[i] = cor(bt.iris.i$Sepallength, bt.iris.i$SepalWidth) # i-th bootstrap correlation coeff
}
bt.CI = quantile(bt.cor.vec, c(0.025, 0.975) )
bt.CI

#it 2.5% 97.5Y%
## -0.25286673 0.04033441

Interpretation: we are 95% confident that there is no statistically significant correlation between sepal
length and sepal width based on the given sample. This may be because the data set contains three different
types of iris.

Next, we make two plots to visualize the relationship between the two variables.

par (nfrow=c(1,2)) # layout a plot sheet: 1 row and 2 columns
## histogram
hist(bt.cor.vec, breaks = 14,
main="Bootstrap Sampling \n Distribution of Correlation",
xlab = "Bootstrap Correlation Coefficient")
## scatter plot
plot(iris$Sepallength, iris$SepalWidth,
main = "Sepal Length vs Width",
xlab "Sepal Length",
ylab = "Sepal Width")
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Figure 5: Left panel: histogram of the bootstrap coefficient of correlation. Right panel: the scatter plot of
the sepal length and width.
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