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1 Introduction
We have briefly introduced the simple linear regression model earlier with an explicit expression.

y = β0 + β1x + ϵ,

Where y is a continuous random numerical variable, x is either a numerical variable or a binary categorical
variable, and ϵ → N(0, σ), the basic applications of a simple linear regression model are twofold:

(1) Assess the linear correlation between the response variable (y) and the predictor variable (x).

(2) Predict the response for given new values of the predictor variable x.

In general, regression modeling is an iterative process in real-world applications, as illustrated in the following
chart.
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In the course project and data analysis, we focus on the iterative loop of model identification and reporting
on the final model. To be more specific, assuming we have an analytic data set that is ready for modeling,

• Select appropriate candidate models to address the practical questions - This includes
checking model assumptions and ensuring the analytic dataset contains sufficient information for the
candidate models. We have highlighted all assumptions when introducing new models in the previous
notes.

• Fit candidate models to the data - This step involves verifying the outputs to ensure the model
parameters (e.g., coefficients) are appropriately estimated.

Note: the fitted models in this step may not be valid or optimal, we should not interpret the
model at this point. We only report the final model obtained from the iterative model
identification process.

• Model diagnostics - This is the most crucial step in any regression analysis, where we assess whether all
assumptions of the candidate models are satisfied. For example, we apply residual diagnostic methods
(commonly used in linear regression) to evaluate linearity, normality, homoscedasticity (constant
variance), and other key assumptions. If no violations are detected, we then use application-specific
performance measures to select the best model for reporting and implementation.

• Model remedy and refinement - If one or more assumptions are violated, we need to use various
methods to fix the problems. We will not discuss this major topic in this class, but will cover this
critical topic in detail in subsequent courses.

• Enter the refined/modified model into the loop for the next iteration - The refined or modified
model will be refitted, analyzed, and diagnosed to determine whether any violations remain. This
process continues iteratively until the final valid and optimal model is identified.

• Final model reporting - This topic will not be emphasized in this class but will be highlighted in
subsequent statistical modeling classes.

In this note, we will extend simple linear regression to multiple linear regression by incorporating two or
more predictor variables into the model. We begin by revisiting the simple linear regression model discussed
earlier this semester. Next, we will generalize the binary categorical predictor to multi-category predictors
through the use of binary indicator variables – effectively creating a special case of multiple linear regression
with multiple binary categorical variables. This approach integrates ANOVA analysis into the regression
framework.
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2 Simple Linear Regression Revisited
The term simple linear regression (SLR) simply means that the regression equation has the form
y = β0 + β1x + ϵ. The predictor variable is either a continuous variable or a binary categorical variable that
takes only two possible distinct values, such as success vs failure, disease vs disease-free, etc. The response
must be a continuous normal variable whose mean may be influenced by the predictor x but
not the variance.

The key assumptions for SLR are

• linearity: linear relationship between y and x;
– diagnostic check: scatter plot of x and y

• deterministic predictor x: the predictor variable is not a random variable.
– No direct information, check this assumption

• normality: the only random variable y is a normal random variable with density function N(β + 0 +
β1x, σ), or ϵ → N(0, σ).

– diagnostic check: Q-Q plot
• constant variance: this assumption is contained in the above normality assumption.

– diagnostic check: residual plot, studentized residual plot
• Influential observations: This is also related to the normality assumption

– diagnostic check: leverage plot (Cook’s distance)

2.1 SLR with A Continuous Predictor
When the predictor variable is continuous, the interpretation of the slope β1 reflects the change in y when
x increases by one unit. The sign of β1 reflects the direction of linear association between x and y. Next,
we use a numerical example to illustrate the regression modeling process. The data set can be found at
https://pengdsci.github.io/STA200/dataset/EduWage.csv. The R function lm() will be used to perform
regression analysis.

The variables in the data set are defined as

• wage: average hourly earnings
• educ: years of education
• exper: years potential experience
• tenure: years with current employer
• lwage: log(wage) - in economics, it is called log wage.
• region: the geographic region of the respondent
• smsa: A Standard Metropolitan Statistical Area (SMSA) is a geographical region defined by the U.S.

Office of Management and Budget that consists of a core urban area with a substantial population,
along with adjacent communities that have a high degree of economic and social integration with that
core. SMSAs are used for statistical purposes to analyze urbanization, population density, and economic
activities in metropolitan areas, providing insights into urban data trends.

Step 1: Load data and explore the dataset.
## Load the dataset
edu.wage <- read.csv("https://pengdsci.github.io/STA200/dataset/EduWage.csv")
## summary of variables in the dataset
summary(edu.wage)

| wage educ exper tenure
| Min. : 0.530 Min. : 0.00 Min. : 1.00 Min. : 0.000
| 1st Qu.: 3.330 1st Qu.:12.00 1st Qu.: 5.00 1st Qu.: 0.000
| Median : 4.650 Median :12.00 Median :13.50 Median : 2.000
| Mean : 5.896 Mean :12.56 Mean :17.02 Mean : 5.105
| 3rd Qu.: 6.880 3rd Qu.:14.00 3rd Qu.:26.00 3rd Qu.: 7.000
| Max. :24.980 Max. :18.00 Max. :51.00 Max. :44.000
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| lwage region smsa
| Min. :-0.6349 Length:526 Min. :0.0000
| 1st Qu.: 1.2030 Class :character 1st Qu.:0.0000
| Median : 1.5369 Mode :character Median :1.0000
| Mean : 1.6233 Mean :0.7224
| 3rd Qu.: 1.9286 3rd Qu.:1.0000
| Max. : 3.2181 Max. :1.0000

The R function summary(dataset.name) returns a five-number summary of all numerical variables in the
dataset. There is a categorical variable region in the dataset. To see the distribution of categorical
variables, we use the R function table(variable.name) to see the frequency distribution of the categorical
variables.
table(edu.wage$region)

|
| northcen other south west
| 132 118 187 89

Step 2: objective and candidate model - we examine whether education affects the wage. The candidate
model to address this objective will be the simple linear regression model. We first make a scatter plot of
educ (horizontal axis) and wage (vertical axis).
plot(edu.wage$educ, # horizontal axis

edu.wage$wage, # vertical axis
xlab = "Years of Education", # horizontal label
ylab = "Hourly Wage", # vertical label
main = "Scatter Plot of Edu vs Wage" # title of the plot
)
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The above plot shows a linear relationship but also shows non-constant variance. This violates the SLR
assumption. Economic studies show that logarithmic wage has less variation. We next try to log wages in the
SLR. Before building the model, we make a scatter plot of log wage vs years of education.
plot((edu.wage$educ)[-1], # horizontal axis

(edu.wage$lwage)[-1], # vertical axis
xlab = "Years of Education", # horizontal label
ylab = "Hourly log(Wage)", # vertical label
main = "Scatter Plot of Edu vs log(Wage)" # title of the plot
)
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The above scatter indicates that the log wage is a better response for SLR.

Step 3: Fitting SLR: log wage = β0 + β1educ and perform residual diagnostics.
## linear model
lgw.model <- lm(lwage ~ educ, data = edu.wage)
## residual plot
par(mfrow=c(2,2)) # create a graphic grid with 4 graphical cells
plot(lgw.model)
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Interpretations of Residual Diagnostic Plots:

• Residual vs Fitted - shows a minor violation of the assumption of constant variance (the variance
increases as the fitted value increases)

• Q_Q Residual Plot - There is no significant violation of the normal distribution
• Scale-Location Plot - no serious violation except a few outliers (not influential)
• Residuals-Leverage - shows no influential points.

Overall, there is a minor violation of the constant variance assumption. We will learn methods in subsequent
courses to refine the model. For illustration, we decided to report the above model.

Step 4 - summarize the log wage model
summary(lgw.model)

|
| Call:
| lm(formula = lwage ~ educ, data = edu.wage)
|
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| Residuals:
| Min 1Q Median 3Q Max
| -2.21158 -0.36393 -0.07263 0.29712 1.52339
|
| Coefficients:
| Estimate Std. Error t value Pr(>|t|)
| (Intercept) 0.583773 0.097336 5.998 3.74e-09 ***
| educ 0.082744 0.007567 10.935 < 2e-16 ***
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|
| Residual standard error: 0.4801 on 524 degrees of freedom
| Multiple R-squared: 0.1858, Adjusted R-squared: 0.1843
| F-statistic: 119.6 on 1 and 524 DF, p-value: < 2.2e-16

Brief Report:

The estimated slope coefficient β̂1 = 0.082744 indicates that log wage increases by 0.082744 for each additional
year of education (p ≈ 0). The coefficient of determination R2 ≈ 0.1858 shows that the log wage and years of
education have a weak linear correlation.

Remarks: Here are a few comments on the general principles of regression analysis

• In this example, we use only two variables in the data set with more than 2 variables to illustrate how
to implement an SLR. In practice, if you have more information (more variables) available in the data,
we should use all relevant information - this is the general principle of all data analysis. This
means we need to use multiple regression to include two or more predictor variables! We will cover
general MLR in the next note.

• Implication of SLR: An implication of SLR is that all other variables do not affect the response
variable y. This also implies that, in general, an SLR can never be an optimal model if it is invalid.

• Choose an optimal subset of predictors: This means we always start with multiple candidate
models in multiple linear regression (MLR) models. For example, if we have two variables x1 and x2,
we can fit three different first order (in predictor variables) MLR based on the combinations of x1, x2,
and x1 + x2. More on different MLRs will be discussed in the next note.

2.2 SLR with A Binary Predictor
We have discussed the regression approach to the two-sample t-test at the beginning of the semester. Here
we use the sample wage dataset and a binary categorical smsa(Standard Metropolitan Statistical Area) to see
whether the average wage in rural and urban areas is different.

Recall the assumption in the two-sample test:

• Wage distributions in both populations (rural and urban populations) are normal, equivalent to the
normality assumption on SLR

• The variances of wages in both populations are unknown but equal, equivalent to the constant variance
assumption in SLR.

When using a software program, we have to specify the predictor variable x to be a factor (categorical
variable). In R, the function factor() converts a categorical or discrete numerical variable (with finite
distinct values) to a factor variable.

We next implement the SLR with a binary factor variable (smsa) and use log wage lwage as the response.
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# lm model
smsa.lm <- lm(lwage ~ factor(smsa), data = edu.wage)
# residual plots
par(mfrow=c(2,2))
plot(smsa.lm)
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1. Interpretations of Residual Diagnostic Plots

• Residual-fitted Values: does not reveal special patterns. The variances of the two groups seem to be
similar to each other.

• Q-Q Plot: No serious violation of the normality assumption was found from the Q-Q plot. Note that
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there is an outlier in the plot.
• Scale-location Plot: does not reveal any special pattern except for an outlier (obs N0. 24).
• Residuals vs Leverage: The Cook’s distance of observation does not have a significant leverage (no

influential).

Overall, there is no significant violation of model assumptions. We report the current model in the following:

2. Interpretations of Regression Coefficients

The binary variablesmsa has two values: 0 = rural area, 1 = urban area. In general, a binary variable (taking
values 0 and 1) is also commonly called a dummy variable in statistics and regression analysis.
summary(smsa.lm)

|
| Call:
| lm(formula = lwage ~ factor(smsa), data = edu.wage)
|
| Residuals:
| Min 1Q Median 3Q Max
| -2.3240 -0.3700 -0.0797 0.3422 1.5439
|
| Coefficients:
| Estimate Std. Error t value Pr(>|t|)
| (Intercept) 1.45182 0.04314 33.652 < 2e-16 ***
| factor(smsa)1 0.23732 0.05076 4.676 3.73e-06 ***
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|
| Residual standard error: 0.5213 on 524 degrees of freedom
| Multiple R-squared: 0.04005, Adjusted R-squared: 0.03822
| F-statistic: 21.86 on 1 and 524 DF, p-value: 3.733e-06

• (Intercept): β̂0 = 1.41518 is the average log wage of rural area (smsa = 0 is the baseline of the
categorical variable sasa).

log(wagerural) = 1.41518 =⇒ wagerural = e1.41518 = 4.117228

The above equations convert the log wage to the original wage. That is, the mean wage in rural areas is
4.117228.

• slope parameter (factor(sasa)1 = level 1 of factor variable smsa =1: urban area): β̂1 = 0.23732
is the difference of the average log wage between the current category (urban area) and the baseline
category (rural area). A more practical interpretation of the slope requires some algebra:

log(wageurban) − log(wagerural) = 0.23732 =⇒ log wageurban
wagerural

= 0.23732

Expanding both sides of the last equation in the above, we have

wageurban
wagerural

= e0.23732 = 1.267847 =⇒ wageurban = 1.267847 × wagerural,

We re-express the last equation in the above to get
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wageurban − wagerural = 1.267847 × wagerural − wagerural = 0.267847wagerural

Which is equivalent to

wageurban − wagerural
wagerural

= 0.267847.

This means that the wage in urban area is 26.7847% higher than the rural area..

3. Relationship between SLR and One-way ANOVA

First of all, we can extract a one-way ANOVA table from a linear regression model using the R function
anova(lm.object)
anova(smsa.lm)

| Analysis of Variance Table
|
| Response: lwage
| Df Sum Sq Mean Sq F value Pr(>F)
| factor(smsa) 1 5.941 5.9406 21.862 3.733e-06 ***
| Residuals 524 142.389 0.2717
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The F statistic in the above ANOVA test (with 1 degree of freedom in the numerator and 524 degrees of
freedom in the denominator) is

F = 21.862.

The t-test statistic in the SLR is a t distribution with 524 degrees of freedom, which is close to the standard
normal distribution.

Z ≈ T = 4.676.

It can be proven that t2
d.f = F1, d.f. This means the result of the t-test in SLR and the F-test in the ANOVA

procedure are identical. Therefore, the SLR with a binary predictor can the one-way ANOVA is a
special SLR!.

3 Linear Regression Approach to One-Way ANOVA
We claimed that one-way ANOVA is a special linear regression model when there is a binary categorical
predictor is included in the model. However, a general CRD allows multiple treatments. In this section, we
will illustrate how to use linear regression to perform a general one-way ANOVA with multiple treatment
groups.

For ease of presentation, we continue using the wage dataset with log wage as the dependent variable and
region as a categorical treatment factor (consisting of four groups: South, West, North-Central, and Other).
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When performing linear regression with a categorical variable that has more than two categories, we must
introduce a series of dummy variables to properly represent the multi-category variable.

Why Use Dummy Variables?

• Encode Categorical Data: They allow categorical variables (nominal or ordinal) to be included in
regression models.

• Avoid Arbitrary Numerical Assignments: Using numbers like 1, 2, 3 for categories implies an
order or magnitude, which may not exist (e.g., Red = 1, Green = 2, Blue = 3 falsely suggests that
Green is “greater” than Red).

• Interpretability: Each dummy variable represents the presence (1) or absence (0) of a category,
making coefficients easy to interpret. To be more specific, the coefficient of a dummy variable represents
the discrepancy between the category associated with the dummy variable and the baseline category.

Steps to Create Dummy Variables from a Multi-Category Variable

• choose a baseline category: The baseline category serves as a reference, allowing other categories to
be compared against it.

– Most software programs automatically set the baseline as the category with the smallest value
(e.g., the first in alphabetical order for categorical variables).

• Create Dummy Variables: For each non-baseline category, define a dummy variable labeling that
category. For example, region = (northcen, other, south, west), the three dummy variables are
defined as

– dummy.other = 1 if lived in other region, 0 if not in other region.
– dummy.south = 1 if lived in south and 0 if not in south region;
– dummy.west = 1 if lived in west and 0 if not in west.

In general, a categorical variable has k categories, and we need to define k − 1 dummy variables. For example,

region dummy.other dummy.south dummy.west
south 0 1 0
west 0 0 1
northcen 0 0 0
other 1 0 0
south 0 1 0

• Interpretation of Dummy Variables in Regression

The coefficients for other, south, and west represent the difference from the reference category (northcen).

• Dummy variables in R
– Categorical variable with character values: In this case, R will define dummy variables

internally and use the default reference category.
– Categorical variable with values in numerical form: In this case, we must use R’s factor()

function to convert the categorical variable into a factor variable (numeric values will be treated
as category labels). R then internally defines dummy variables and selects the baseline category as
the one with the smallest numerical label.

– If the default reference category is not preferred, you can use R’s relevel() function to manually
specify a custom baseline category for easier interpretation.
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# Example data
data <- data.frame(color = c("Red", "Green", "Blue", "Green", "Red"))

# Set "Green" as the baseline (reference) category
data$color <- factor(data$color)
data$color <- relevel(data$color, ref = "Green")

# Check levels (first level is the baseline)
levels(data$color) # Output: "Green" "Red" "Blue"

| [1] "Green" "Blue" "Red"

On the Significance of the Categorical Variable:

• If any of the dummy variables is statistically significant (i.e., p-value < 0.05), the original categorical
variable is considered significant.

• If all dummy variables are statistically insignificant, the original categorical variable is insignificant.

• If the original categorical variable is insignificant, it should be excluded from the regression model in
real real-world application.

In the output of lm(), the F test in the bottom portion provides the significance test of the
categorical variable. This F test is the same F test in the one-way ANOVA!!!

An Numerical Example

We use the plant growth dataset to build a regression model with the multi-category predictor group and
compare it with a one-way ANOVA procedure. The data set is at <>. We will follow several logical steps to
conduct the analysis.

Step 1: fit candidate model and perform diagnostics
## Load the dataset
plant <- read.csv("https://pengdsci.github.io/STA200//dataset/oneWayPlantGrowth.csv")
##
plant.lm <- lm(weight ~ group, data = plant) # factor(group) will also work
## residual plots
par(mfrow=c(2,2))
plot(plant.lm)
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None of the above residual plots shows significant violations of model assumptions except for a few outliers
that are not influential. We report the model.

Step 2: Reporting the linear model
summary(plant.lm)

|
| Call:
| lm(formula = weight ~ group, data = plant)
|
| Residuals:
| Min 1Q Median 3Q Max
| -1.0710 -0.4180 -0.0060 0.2627 1.3690
|
| Coefficients:
| Estimate Std. Error t value Pr(>|t|)
| (Intercept) 5.0320 0.1971 25.527 <2e-16 ***
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| grouptrt1 -0.3710 0.2788 -1.331 0.1944
| grouptrt2 0.4940 0.2788 1.772 0.0877 .
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|
| Residual standard error: 0.6234 on 27 degrees of freedom
| Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096
| F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

Interpretation of the output

• The explicit model formula has only the original group categorical variable with three categories. In
fact, the implicit model formula uses dummy variables. In other words, the actual model formula used
in the model is weight = β0 + β1grouptrt1 + β2grouptrt2, where β0 = µctr, β1 = µtrt1 − µctr and
β2 = µtrt2 − µctr

• The F test in the bottom portion yields a p-value of 0.01591. At a significance level of 0.05, we reject
the null hypothesis that region is significant. In other words, this F-test tests the null hypothesis:
H0 : β1 = β2 = 0. This equivalent to H0 : µctr = µtrt1 = µtrt2. This is exactly the F test in the
one-way ANOVA! We will extract the one-way ANOVA from the linear model shortly.

• Interpretation of Regression coefficients: At the significance level of 0.05, neither of the two
dummy variables is statistically significant.

– β0 = µctr, This represents the mean of the baseline category. The p-value tests the hypothesis
H0 : β0 = 0.

– β̂1 = µ̂trt1 − µ̂ctr = −0.3710: The p-value of 0.1944 corresponds to testing the hypothesis
H0 : β1 = 0 (or equivalently, H0 : µtrt1 − µctr = 0). The p-value indicates no statistically
significant difference between trt1 and ctr. The negative sign of the estimate suggests that
the sample mean of ctr is higher than that of trt1.

– β̂2 = µ̂trt2 − µ̂ctr = 0.4940, The p-value of 0.0877 corresponds to testing the hypothesis H0 : β2 = 0
(or equivalently, H0 : µtrt2 − µctr = 0). The p-value indicates no statistically significant
difference between trt2 and ctr. The positive sign of the estimate suggests that the sample
mean of trt2 is higher than that of ctr.

Next, we extract the one-way ANOVA table directly from the above linear regression model.
# extract ANOVA table directly from linear regression model
anova(plant.lm)

| Analysis of Variance Table
|
| Response: weight
| Df Sum Sq Mean Sq F value Pr(>F)
| group 2 3.7663 1.8832 4.8461 0.01591 *
| Residuals 27 10.4921 0.3886
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The F-test from the one-way ANOVA table above is identical to the one reported in the previous regression
model. We can also generate the same one-way ANOVA table using R’s built-in functionaov()

The coefficients associated with dummy variables in the regression output represent the difference between
the mean of the underlying category and that of the baseline category. That is, β̂1 = µ̂trt1 − µ̂ctr = −0.3710
and β̂2 = µ̂trt2 − µ̂ctr = 0.4940. This information is given in Tukey’s HSD (see the output of TukeyHSD())
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plant.aov <- aov(weight ~ group, data = plant)
TukeyHSD(plant.aov)

| Tukey multiple comparisons of means
| 95% family-wise confidence level
|
| Fit: aov(formula = weight ~ group, data = plant)
|
| $group
| diff lwr upr p adj
| trt1-ctrl -0.371 -1.0622161 0.3202161 0.3908711
| trt2-ctrl 0.494 -0.1972161 1.1852161 0.1979960
| trt2-trt1 0.865 0.1737839 1.5562161 0.0120064

The first two estimated differences (trt1 - ctr and trt2 - ctr) correspond to the regression coefficients of
the dummy variables in the previous model. The p-values reported in the regression model are unadjusted
(based on individual tests), whereas Tukey’s HSD is a group test, and its corresponding p-values are adjusted
to control the overall Type I error rate (i.e., to prevent inflation of the false positive rate).

Remarks:

• The linear regression model used to perform one-way ANOVA has multiple dummy predictor
variables in the model formula (although implicitly expressed). In other words, the regression model
for the one-way ANOVA is a special multiple linear Regression (MLR) model.

• Multiple Linear Regression (MLR) maintains the same assumptions as simple linear regression: indepen-
dent and identically distributed (i.i.d.) observations, deterministic predictors, linearity between response
and predictor, normality of residuals, and homoscedasticity (constant variance). Since MLR involves
multiple predictor variables, an additional assumption is the absence of high correlations between
predictors. Violation of this assumption is referred to as multicollinearity in regression modeling.

• The reason we encode a categorical variable with k categories into (k-1) dummy variables (rather than k)
is to avoid multicollinearity issues. For example, suppose we have a categorical variable Education with
3 levels: High School (baseline/reference), Bachelor’s, and Master’s. If we create 3 dummy variables:

– D1 = 1 if High School, 0 otherwise
– D2 = 1 if Bachelor’s, 0 otherwise
– D3 = 1 if Master’s, 0 otherwise

This creates perfect multicollinearity because for every observation: D1 + D2 + D3 = 1 (always)!!!

To conclude this section, watch the YouTube video (https://www.youtube.com/watch?v=CMAwKuCw
5CM&list=PLfQppi3mzF5nQzSm-RWQnvHFg46GQVK_4&index=4) that focuses on the ANOVA table
extracted from the linear regression.

4 Multiple Linear Regression Approach to Two-way ANOVA
This section focuses on linear regression with two categorical variables, each with multiple
levels. We have previously learned about two-way ANOVA based on a replicated Randomized Block Design
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(RBD), which allows for inference on interaction effects. The linear regression model to be discussed will also
include an interaction term.

Since the underlying concept is similar to the one-way ANOVA covered in the previous section, the explicit
model formula remains relatively simple. However, the implicit model formula for linear regression with two
categorical variables (including an interaction effect) is more complex than that of one-way ANOVA. We will
use an example to illustrate some key features of multiple linear regression (MLR) involving only categorical
variables with an interaction term.

The dataset recorded the yield of different crops under different fertilizers. The two-way data table is given
below.

We have used various R commands earlier to convert a two-way data table to an R dataframe for regression
modeling. We next use similar code to convert the above table to a dataframe.
## To avoid typing errors, we input the table cell by cell from the data table
crop.data <- data.frame(

Fertilizer = rep(c("Blend X", "Blend Y", "Blend Z"), each = 20),
Crop = rep(rep(c("Wheat", "Corn", "Soy", "Rice"), each = 5), times = 3),
Yield = c(123, 156, 112, 100, 168, # Blend X - Wheat

128, 150, 174, 116, 109, # Blend X - Corn
166, 178, 187, 133, 195, # Blend X - Soy
151, 125, 117, 155, 138, # Blend X - Rice
##
135, 130, 176, 120, 155, # Blend Y - Wheat
175, 132, 120, 187, 184, # Blend Y - Corn
140, 145, 159, 131, 126, # Blend Y - Soy
167, 188, 142, 167, 168, # Blend Y - Rice
##
156, 180, 147, 146, 193, # Blend Z - Wheat
186, 138, 178, 176, 190, # Blend Z - Corn
185, 206, 188, 165, 188, # Blend Z - Soy
175, 173, 154, 191, 169) # Blend Z - Rice

)

# Convert factors to factors (important for modeling)
crop.data$Fertilizer <- as.factor(crop.data$Fertilizer)
crop.data$Crop <- as.factor(crop.data$Crop)
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Next, we fit a linear regression model with an interaction term and list the terms (dummy variables)
in the implicit internal model formula by using two R functions model.matrix(model.name) and
colnames(model.matrix.name). See how these R functions are called in the following code chunk.
## Explicit form is still a simple
crop.lm <- lm(Yield ~ Crop * Fertilizer, data = crop.data)
## model matrix provides all dummy variables implicitly defined in the R
model.mtx <- model.matrix(crop.lm)
## extract the column names of the model matrix ==> list of dummy variables in the
## implicit internal model formula
colnames(model.mtx)

| [1] "(Intercept)" "CropRice"
| [3] "CropSoy" "CropWheat"
| [5] "FertilizerBlend Y" "FertilizerBlend Z"
| [7] "CropRice:FertilizerBlend Y" "CropSoy:FertilizerBlend Y"
| [9] "CropWheat:FertilizerBlend Y" "CropRice:FertilizerBlend Z"
| [11] "CropSoy:FertilizerBlend Z" "CropWheat:FertilizerBlend Z"

These dummy variables will appear in the output of the regression model in the subsequent model output.
Before summarizing the model, we check the model assumptions to see whether significant violations exist
using residual diagnostic plots.
par(mfrow = c(2,2)) # define the layout with 2x2 graphical panels
plot(crop.lm)
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The residual plots look fine except for a pattern in the Q-Q plot, which indicates the distribution of the
residuals is slightly skewed to the left. We will not explore methods of remedies in this class, but they will be
discussed in the subsequent classes. Next, we report the results of the models.
summary(crop.lm)

|
| Call:
| lm(formula = Yield ~ Crop * Fertilizer, data = crop.data)
|
| Residuals:
| Min 1Q Median 3Q Max
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| -39.60 -15.00 0.70 15.45 38.60
|
| Coefficients:
| Estimate Std. Error t value Pr(>|t|)
| (Intercept) 135.400 9.639 14.048 < 2e-16 ***
| CropRice 1.800 13.631 0.132 0.89549
| CropSoy 36.400 13.631 2.670 0.01031 *
| CropWheat -3.600 13.631 -0.264 0.79283
| FertilizerBlend Y 24.200 13.631 1.775 0.08218 .
| FertilizerBlend Z 38.200 13.631 2.802 0.00729 **
| CropRice:FertilizerBlend Y 5.000 19.277 0.259 0.79646
| CropSoy:FertilizerBlend Y -55.800 19.277 -2.895 0.00570 **
| CropWheat:FertilizerBlend Y -12.800 19.277 -0.664 0.50987
| CropRice:FertilizerBlend Z -3.000 19.277 -0.156 0.87698
| CropSoy:FertilizerBlend Z -23.600 19.277 -1.224 0.22683
| CropWheat:FertilizerBlend Z -5.600 19.277 -0.291 0.77269
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|
| Residual standard error: 21.55 on 48 degrees of freedom
| Multiple R-squared: 0.4543, Adjusted R-squared: 0.3292
| F-statistic: 3.632 on 11 and 48 DF, p-value: 0.0008828

Output Interpretations

• The F-test in the bottom portion of the output indicates that at least one factor (crop or fertilizer
or both) is significant ()

• Intercept - the mean of yields of corn using fertilizer X. i.e., (128 + 150 + 174 + 116 + 109)/5
= 135.4. This is the baseline category, defined by Corn and Blend X. All other categories will be
compared to this baseline either directly or indirectly.

– The coefficients for CropRice, CropSoy, and CropWheat represent the difference in mean yield
between these crops and Corn when using Blend X fertilizer.

– The coefficients for FertilizerBlend Y and FertilizerBlend Z represent the difference in mean
yield for Corn when comparing Blend Y and Blend Z to the baseline (Blend X).

– The coefficients for the interaction terms are not straightforward to interpret because they represent
combined effects. Refer to the annotated output and original data table below to understand how
these interaction term coefficients were calculated.
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As we did with the one-way ANOVA, we can also extract the two-way ANOVA table directly from the linear
regression model above.
anova(crop.lm)

| Analysis of Variance Table
|
| Response: Yield
| Df Sum Sq Mean Sq F value Pr(>F)
| Crop 3 2965.7 988.6 2.1282 0.1089382
| Fertilizer 2 9702.2 4851.1 10.4436 0.0001716 ***
| Crop:Fertilizer 6 5892.6 982.1 2.1143 0.0687635 .
| Residuals 48 22296.4 464.5
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The two-way ANOVA table provides three F-tests for assessing the two individual factors and their interaction
effect, whereas the F-test in the regression output only tests whether all factors are jointly insignificant—a
global goodness-of-fit measure. From this perspective, the two-way ANOVA F-tests offer more granular
insights. However, regression coefficient inference allows for more detailed testing at individual factor levels,
as well as for interaction effects between factor levels. Although Tukey’s HSD procedure provides confidence
intervals (and family-wise tests for simultaneous comparisons), it does not explicitly account for interaction
effects in the multiple comparisons.
## fit an anova model since TukeyHSD() requires the aov() object
crop.aov <- aov(Yield ~ Crop * Fertilizer, data = crop.data)
## HSD calls
TukeyHSD(crop.aov)

| Tukey multiple comparisons of means
| 95% family-wise confidence level
|
| Fit: aov(formula = Yield ~ Crop * Fertilizer, data = crop.data)
|
| $Crop
| diff lwr upr p adj
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| Rice-Corn 2.466667 -18.47792 23.411252 0.9891976
| Soy-Corn 9.933333 -11.01125 30.877918 0.5910428
| Wheat-Corn -9.733333 -30.67792 11.211252 0.6069146
| Soy-Rice 7.466667 -13.47792 28.411252 0.7787573
| Wheat-Rice -12.200000 -33.14459 8.744585 0.4163283
| Wheat-Soy -19.666667 -40.61125 1.277918 0.0728352
|
| $Fertilizer
| diff lwr upr p adj
| Blend Y-Blend X 8.30 -8.183166 24.78317 0.4486138
| Blend Z-Blend X 30.15 13.666834 46.63317 0.0001620
| Blend Z-Blend Y 21.85 5.366834 38.33317 0.0066534
|
| $`Crop:Fertilizer`
| diff lwr upr p adj
| Rice:Blend X-Corn:Blend X 1.8 -45.0050873 48.605087 1.0000000
| Soy:Blend X-Corn:Blend X 36.4 -10.4050873 83.205087 0.2718890
| Wheat:Blend X-Corn:Blend X -3.6 -50.4050873 43.205087 1.0000000
| Corn:Blend Y-Corn:Blend X 24.2 -22.6050873 71.005087 0.8228174
| Rice:Blend Y-Corn:Blend X 31.0 -15.8050873 77.805087 0.5076482
| Soy:Blend Y-Corn:Blend X 4.8 -42.0050873 51.605087 0.9999999
| Wheat:Blend Y-Corn:Blend X 7.8 -39.0050873 54.605087 0.9999854
| Corn:Blend Z-Corn:Blend X 38.2 -8.6050873 85.005087 0.2115608
| Rice:Blend Z-Corn:Blend X 37.0 -9.8050873 83.805087 0.2506320
| Soy:Blend Z-Corn:Blend X 51.0 4.1949127 97.805087 0.0219849
| Wheat:Blend Z-Corn:Blend X 29.0 -17.8050873 75.805087 0.6066374
| Soy:Blend X-Rice:Blend X 34.6 -12.2050873 81.405087 0.3423125
| Wheat:Blend X-Rice:Blend X -5.4 -52.2050873 41.405087 0.9999997
| Corn:Blend Y-Rice:Blend X 22.4 -24.4050873 69.205087 0.8838055
| Rice:Blend Y-Rice:Blend X 29.2 -17.6050873 76.005087 0.5967325
| Soy:Blend Y-Rice:Blend X 3.0 -43.8050873 49.805087 1.0000000
| Wheat:Blend Y-Rice:Blend X 6.0 -40.8050873 52.805087 0.9999990
| Corn:Blend Z-Rice:Blend X 36.4 -10.4050873 83.205087 0.2718890
| Rice:Blend Z-Rice:Blend X 35.2 -11.6050873 82.005087 0.3177646
| Soy:Blend Z-Rice:Blend X 49.2 2.3949127 96.005087 0.0315296
| Wheat:Blend Z-Rice:Blend X 27.2 -19.6050873 74.005087 0.6939901
| Wheat:Blend X-Soy:Blend X -40.0 -86.8050873 6.805087 0.1614830
| Corn:Blend Y-Soy:Blend X -12.2 -59.0050873 34.605087 0.9988789
| Rice:Blend Y-Soy:Blend X -5.4 -52.2050873 41.405087 0.9999997
| Soy:Blend Y-Soy:Blend X -31.6 -78.4050873 15.205087 0.4784497
| Wheat:Blend Y-Soy:Blend X -28.6 -75.4050873 18.205087 0.6263743
| Corn:Blend Z-Soy:Blend X 1.8 -45.0050873 48.605087 1.0000000
| Rice:Blend Z-Soy:Blend X 0.6 -46.2050873 47.405087 1.0000000
| Soy:Blend Z-Soy:Blend X 14.6 -32.2050873 61.405087 0.9946081
| Wheat:Blend Z-Soy:Blend X -7.4 -54.2050873 39.405087 0.9999915
| Corn:Blend Y-Wheat:Blend X 27.8 -19.0050873 74.605087 0.6653705
| Rice:Blend Y-Wheat:Blend X 34.6 -12.2050873 81.405087 0.3423125
| Soy:Blend Y-Wheat:Blend X 8.4 -38.4050873 55.205087 0.9999691
| Wheat:Blend Y-Wheat:Blend X 11.4 -35.4050873 58.205087 0.9993994
| Corn:Blend Z-Wheat:Blend X 41.8 -5.0050873 88.605087 0.1210713
| Rice:Blend Z-Wheat:Blend X 40.6 -6.2050873 87.405087 0.1469832
| Soy:Blend Z-Wheat:Blend X 54.6 7.7949127 101.405087 0.0103529
| Wheat:Blend Z-Wheat:Blend X 32.6 -14.2050873 79.405087 0.4309559
| Rice:Blend Y-Corn:Blend Y 6.8 -40.0050873 53.605087 0.9999964
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| Soy:Blend Y-Corn:Blend Y -19.4 -66.2050873 27.405087 0.9529104
| Wheat:Blend Y-Corn:Blend Y -16.4 -63.2050873 30.405087 0.9861932
| Corn:Blend Z-Corn:Blend Y 14.0 -32.8050873 60.805087 0.9962200
| Rice:Blend Z-Corn:Blend Y 12.8 -34.0050873 59.605087 0.9982727
| Soy:Blend Z-Corn:Blend Y 26.8 -20.0050873 73.605087 0.7126723
| Wheat:Blend Z-Corn:Blend Y 4.8 -42.0050873 51.605087 0.9999999
| Soy:Blend Y-Rice:Blend Y -26.2 -73.0050873 20.605087 0.7399717
| Wheat:Blend Y-Rice:Blend Y -23.2 -70.0050873 23.605087 0.8584571
| Corn:Blend Z-Rice:Blend Y 7.2 -39.6050873 54.005087 0.9999936
| Rice:Blend Z-Rice:Blend Y 6.0 -40.8050873 52.805087 0.9999990
| Soy:Blend Z-Rice:Blend Y 20.0 -26.8050873 66.805087 0.9422853
| Wheat:Blend Z-Rice:Blend Y -2.0 -48.8050873 44.805087 1.0000000
| Wheat:Blend Y-Soy:Blend Y 3.0 -43.8050873 49.805087 1.0000000
| Corn:Blend Z-Soy:Blend Y 33.4 -13.4050873 80.205087 0.3943466
| Rice:Blend Z-Soy:Blend Y 32.2 -14.6050873 79.005087 0.4497486
| Soy:Blend Z-Soy:Blend Y 46.2 -0.6050873 93.005087 0.0559743
| Wheat:Blend Z-Soy:Blend Y 24.2 -22.6050873 71.005087 0.8228174
| Corn:Blend Z-Wheat:Blend Y 30.4 -16.4050873 77.205087 0.5372002
| Rice:Blend Z-Wheat:Blend Y 29.2 -17.6050873 76.005087 0.5967325
| Soy:Blend Z-Wheat:Blend Y 43.2 -3.6050873 90.005087 0.0956612
| Wheat:Blend Z-Wheat:Blend Y 21.2 -25.6050873 68.005087 0.9163288
| Rice:Blend Z-Corn:Blend Z -1.2 -48.0050873 45.605087 1.0000000
| Soy:Blend Z-Corn:Blend Z 12.8 -34.0050873 59.605087 0.9982727
| Wheat:Blend Z-Corn:Blend Z -9.2 -56.0050873 37.605087 0.9999234
| Soy:Blend Z-Rice:Blend Z 14.0 -32.8050873 60.805087 0.9962200
| Wheat:Blend Z-Rice:Blend Z -8.0 -54.8050873 38.805087 0.9999811
| Wheat:Blend Z-Soy:Blend Z -22.0 -68.8050873 24.805087 0.8953849

The following annotated output illustrates how to calculate various differences in the results of Tukey’s HSD
procedure.
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We can see that Tukey’s HSD.

The following YouTube video (28 minutes) is one of the very few that uses a linear regression approach to
perform ANOVA analysis (https://www.youtube.com/watch?v=CS5ogBL-MHo). Please pay close attention
to the explanation of the linear regression output, particularly the explanation of the two-way ANOVA with
interaction term.

Finally, practice two-way ANOVA using regression approaches based on the following data table with two
binary factors. Because both factors are binary, the interpretation of the output should be straightforward.
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