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1 Introduction

Experimental design is a fundamental aspect of statistical analysis, allowing researchers to systematically
investigate the effects of different treatments on a response variable. In CRD, experimental units are randomly
assigned to different treatment groups.
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In this note, we will explore how Classical Analysis of Variance (ANOVA) and Regression Analysis can be
used to analyze data from a CRD. We will also illustrate these methods using some numerical examples. For

Working Data in Plant Physiology

Our example data are from an experiment in plant physiology, published by Sokal and Rohlf (1995). The
lengths of pea sections (the dependent, or response, variable) grown in a tissue culture were recorded. The
purpose of the experiment was to test the effects of various sugar media (the independent, or explanatory,
variable) on mean pea section length. A balanced CRD was used with 10 replicates per treatment level.

The data are given in the table below:

Observed length of pea sections (ocular units) for the different sugar treatments.

Treatment
Control Glucose Fructose GlucFruc Sucrose
2% glucose 2% fructose 1% glucose+1% 2% sucrose
added added fructose added
75 57 58 58 62
67 58 61 59 66
70 60 56 58 65
75 59 58 61 63
65 62 57 57 64
71 60 56 56 62
67 60 61 58 65
67 57 60 57 65
76 59 57 57 62
68 61 58 59 67

The wide-format table is easy to use when performing manual calculations. Most of the software programs
use long-format data tables. We will reshape this wide table when using the R program for various analyses.

2 Objective and Logic of Analyzing CRD Data

Before moving to data analysis, we first discuss the objective, logic, and methods for analyzing CRD data.
The

2.1 The objective and Logic
The core goals when analyzing Completely Randomized Design (CRD) data are threefold:

e Treatment Effect Detection - Determine if different treatments produce statistically significant
differences in the response variable. For example, do fertilizers A, B, and C result in different crop



yields?

o Effect Size Quantification - Measure the magnitude of treatment differences. For example, Fertilizer
C increases yield by 13 bushels/acre compared to Fertilizer A

« Ranking/Comparison of Treatments Identify which treatments perform best/worst. This involves
multiple comparisons among means across treatments. For example, we can order fertilizers by yield: A
> B > A through multiple comparisons.

Statistically, treatment Effect Detection in CRD with k treatments can be achieved by testing a hypothesis.
Hy:pp=ps=---=pr vs Hy: at least one mean differs

If Hy is rejected, we quantify the size of treatment effects and rank the treatment effects across the treatments
in the CRD. There are different approaches to testing the above hypothesis

2.2 Measuring Discrepancy between Hy, and H,
Let’s use the following balanced CRD data table and related notations.

Treatments
Trt.1 Trt.2 Trt.3 Trt.t
1 Y11 Y21 Y31 ¥r1
2 Y1z ¥az Y3z " Yo
3 Yiz Ya3 Yaz o Yz
4 Y14 ¥aa Y3 - Yia
5 XYis Y25 Y35 - Y5
6 Yis Yae Yag o Yie
¥in, ¥an, Vang Viene
Column mean ¥y Va. Va. v Ve

Notations: Three Different Errors

Sample size: ny = n; +nz + -+ n, Between Treatment: ¥, — y..

Column Mean: ¥y = (y13 +¥12 + s+ y1n )/ 1 Within i-th Treatment: y; — 5,
— 1 nji . —

Grand Total: 3. = H—TZ§:1 2w Residual: y; — ..

The three different errors defined above have the following relationship.

(Wij —v..) = (W5 — ¥i.) + Wi — §..)

The above expression simply means that we can decompose the overall residual (y;; — y..) into within
treatment error ((y;; — ¥i.), also called within residual error) and between treatment error (g;. — ¥..). Since an
error could be positive or negative. Similar to the definition of variance, we square all these errors to obtain
squared errors.

After some tedous algebra (i.e., not straightforward at all!), we have the following equation

Uz

SN Wi -9 =) i(yij 5+ i(ﬂi» -7.)?

i=1 j=1 i=1 j=1 i=1j=1



The last term in the above equation has no subscript j; we simplify the last term to get the following equation.

> i(yij )= i:(yij — i)’ +Zni(§i» -7.)?

i=1 j=1 i=1 j=1

SSy SSw SSp

where SS7 = Total Sum of Squared Residuals, SSy = Sum of Squared Errors within treatments
and SSp = Sum of Squared Errors between treatments.

Recall the definition of sample variance
o (@1 —Z)P4 (o —T) 4+ (xy—2)? YT (1 —T)?

5= n—1 - n—1

)

Which is average squared deviation (also called mean squared deviation MSD or mean squared
error, MSE)! The denominator n — 1 in the above definition reflects the degrees of freedom - meaning
that number of independent observations (n) minus one constratint (z = Y., ;/n, each equation based on
the n independent observatiob is considered as a contraint!).

Let’s look at SSp: There are ¢ independent means (one for each treatment) {y;.,¥2., 3., - , 4t }, the grand
total g.. is consider a constraint. Therefore, there are $ t-1$ degrees of freedom associated with SSg. Therefore,
the mean squared error of the between errors is defined by

SSp
MSp =——
P
Similarly, in SSyw, there ny independent observations y;; and ¢ constraints {1.,%a., y3., - - , ys.} (Yes! since

each of them is the mean of observations within each treatment). Therefore, the degrees of freedom
in SSw is ny — t, Therefore, the mean square error of within errors is defined by

SSw

MSy = .
ant

Remarks:
e MSpg is the estimated sample variance of the sample means of individual treatments.
e MSy is the weighted average of the variances of each individual treatment.
Here is the logic for how to define a measure to assess the discrepancy between Hy and H,:

If there is no real difference between treatments (i.e., Hy is true), M.Sp and M Sy both estimate
the same underlying variance. Therefore M Sp ~ M Sy !

We can construct the test statistic based on M Sp and M SEp under Hy. Mathematically, both M Sg — M Sy
(= 0) and MSp/MSw (= 1) are valid measures to assess the discepancy between Hy and H,. Since both
quantities are random (since they are evaluated based on the random sample), we need to choose the one
with a known probability distribution. The ratio expression M Sp/M Sy has a well-known distribution -
F distribution!



2.3 Basics of F Distribution

We have discussed several distributions to characterize test statistics for the z-test, t-test, and chi-square test.
One of the essential tools in hypothesis testing involving the comparison of variances (the case we introduced
above) is the F-distribution. This subsection outlines the basics of the F-distribution and demonstrates how
to use R to compute critical values and p-values associated with F-tests.

The F-distribution is a continuous probability distribution used for the comparison of two sample variances
(such as SSp and SSy ) and regression analysis (will discuss this later). Using the above quantities, we have

 SSw/(nr — 1)
= SSp/t=1) Dt

np — t is the degrees of freedom of the numerator and ¢t — 1 is the degrees of the denominator. We can
also flip the ratio to get another valid test statistic

SSp/(t—1)
Fr=—" 7 S F
SSW/(TLT—t) - t=1,nr—t

Caution: the degrees of freedom in the subscript MUST be adjusted so that the first index is the degrees of
freedom of the numerator and the second subscript represents the degrees of freedom of the denominator.
This means F7 5 and F;; are two different F distributions!

Fypy a5p is skewed to the right. The following figure shows the density curve of an F-distribution with degrees
of freedom dfl = 7 (numerator) and df2 = 10 (denominator), together with the R commands to find the
critical and p-values.

F'Lll)

R Command:
pf(2.15, dfl1=7, df2 =10, lower.tail = FALSE)

Resultinﬁmvalue

p=0.132

Given significance level
a = 0.05

T T T T T T T
0.336 1.007 1678 2349 303 3691 4362

Resulting critical value
CV =F;,=3.136
1

R Command: v

qf(0.05, df1=7, df2 =16, lower.tail = FALSE)

0.33 1.007 1678 2349 302 3691 4.362

Given Test Statistic
TS =2.15

The syntax of the two R functions used to find the p-value and critical value is annotated in the following
figure.

Given significance level a (right tail area)

/
aqf(p, dfl, df2, 10wer‘.tai%ﬁ= TRUE) —» Critical Value
Numerator d.f. Denominator d.f. Right-tail area
pf(q, dfl, df2, lower.tail = TRUE) —> P -Value

Given value of test statistic



Most introductory statistics textbooks include an F table based on a few commonly used significance levels a.
For example, the critical value of F7 19 at o = 0.05 labeled in the left panel of the density curve of F7 1o can
also be found from the following F table

F-table of Critical Values of a = 0.05 for F(df1, df2)
DFl1=1 2 3 4 S 6 7 8 9 10 12 15 20 24 30 40 60 120 =

DF2=1 | 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88[243.01 245.95 248.01 249.05 250.10 251.14 252.20 25325 254.31
2 | 1851 19.00 19.16 19.25 19.30 19.33 19|35 19.37 19.38 19.40|19.41 19.43 1945 19.45 19.46 19.47 19.48 19.49 1950
3 10.13 955 928 912 901 8% 8B9 885 881 879|874 870 866 864 862 859 857 855 8353
4 771 694 659 6.39 626 6.16 609 604 600 596|591 586 580 577 575 572 569 566 563
5| 661 579 541 519 505 495 488 482 477 474|468 462 456 453 450 446 443 440 437
6 599 514 476 453 439 428 421 415 410 406|400 394 387 384 381 377 374 3.70 3.67
7| 559 474 435 412 397 387 379 373 368 364|357 351 344 341 338 334 330 327 323
8 532 446 407 384 369 358 350 344 339 335(328 322 315 312 308 304 301 297 293
9 512 426 386 363 348 337 329 323 318 3.14|3.07 301 29 29 286 283 279 275 271
10 - = ﬁ 307 302 298|291 285 277 274 270 266 262 258 254

11 | 484 398 359 336 320 3.09 3.01 295 29 285]2.79 272 265 2.61 257 253 249 245 240
12 | 475 389 349 326 311 300 291 285 280 275|269 262 254 251 247 243 238 234 230
13 | 467 381 341 318 3.03 292 283 277 271 267|260 253 246 242 238 234 230 225 221
14 | 460 3.74 334 311 296 285 2.76 270 2.65 2.60)2.53 246 239 235 231 227 222 218 213

iz A <A 1 A0 2 70 2 NK D an 7 70 "M 7 RA 2 2a R | 9 AQ 2 AN D 212 274 72K elely} RIS 211 N7

The F tables are constructed based on a few significance levels. It is not to use use F table to find p-values.

Next, we open a standalone section to formally introduce the one-way ANOVA for CRD data.

3 One-Way ANOVA and Implementation

We have discussed the logic and valid measures for assessing the discrepancy between Hy and H,. Next, we
summarize the above results in a classical one-way ANOVA table and test the following null hypothesis based
on the CRD.

Hy:py =po=---=pu vs Hg :at least one mean differs

The test statistic and corresponding p-value are summarized in the following ANOVA table.

Source DF SS MS F-Value P-Value
Between t—1 SSg MSgp = MSw/MSg
S/t —1)
Within nr — t SSW MSW =
SSW/(nT — t)
Total np —°¢ SSt

Decision Rule: If the p-value in the above table is less than the significance level a, we reject the null
hypothesis; otherwise, we conclude the null hypothesis.

Next, we use the plant physiology data to demonstrate to to construct the above ANOVA table and use R
as a calculator to find S'S and M .S and related quantities in the ANOVA table. The following code loads the
data into R in the same format (i.e., wide table format)

# Create the data vectors

Control <- c(75, 67, 70, 75, 65, 71, 67, 67, 76, 68) # Control

Glucose <- c(57, 58, 59, 59, 62, 60, 60, 57, 59, 61) # Glucose



Fructose <- c(58, 61, 56, 58, 57, 56, 58, 60, 57, 58) # Fructose
GlucFruc <- c(58, 59, 58, 61, 57, 56, 58, 57, 57, 59) # GlucFruc
Sucrose <- c(62, 66, 65, 63, 64, 62, 65, 65, 62, 67) # Sucrose
## using cbind() to display the data

cbind(Control, Glucose, Fructose, GlucFruc, Sucrose)

Control Glucose Fructose GlucFruc Sucrose

[

[ [1,] 75 57 58 58 62
[ [2,] 67 58 61 59 66
[ [3,] 70 59 56 58 65
| [4,] 75 59 58 61 63
| [5,] 65 62 57 57 64
| [6,] 71 60 56 56 62
| [7,] 67 60 58 58 65
| [8,] 67 57 60 57 65
[ [9,] 76 59 57 57 62
| [10,] 68 61 58 59 67

#colnames (wide. table) <- c("Control", "Glucose", "Fructose", "GlucFruc", "Sucrose')

The next code chunk calculates different quantities in the ANOVA table. I will make comments in the
code to show detailed steps. The primary R commands are sum(), mean(), and related R functions of the
F-distribution.

## degrees of freedom

t =5

n.T = 10%5

dfN =t - 1

dfD = n.T - t

ybar.. = mean(c(Control, Glucose, Fructose, GlucFruc, Sucrose))

## Sum of squares

SS.B = 10*sum(c((mean(Control)-ybar..) 2, (mean(Glucose)-ybar..) 2, (mean(Fructose)-ybar..) 2, (mean(GL
SS.W = sum(c(sum((Control-mean(Control)) "2), sum((Glucose-mean(Glucose)) 2), sum((Fructose-mean(Fructos
SS.T = sum((c(Control, Glucose, Fructose, GlucFruc, Sucrose) - ybar..) 2)

## MS

MS.B = SS.B/dfN

MS.W = SS.W/dfD

## F value

F.value = MS.B/MS.W

p-val = pf(F.value, dfN, dfD, lower.tail = FALSE)

anova.out <- data.frame(

DF = c(dfN, dfD),
SS = c(SS.B, SS.W),
MS = c(MS.B, MS.W),

F.value = c(F.value, NA),
p.value = c(p.val, NA)

)

rownames (anova.out)=c("Between", "Within")

print (anova.out, na.print = "")

| DF SS MS F.value p-value
| Between 4 1077.944 269.486000 51.31981 3.324636e-16
| Within 45 236.300 5.261111 NA NA

Conclusion: The p-value is approximately 0. We reject the null hypothesis that all means are equal. In
other words, the mean pea section length is affected by various sugar media.



The second part of the following YouTube video (after 15 Minutes, https://www.youtube.com/watch?v=KJ
5G2KjcXcA) discussed in the next note on One-way ANOVA.

4 ANOVA with R Function aov()

We still use plant physiology data to illustrate one-way ANOVA analysis using aov(). Since aov() requires
a long table structure. That is, all measurements of the response must be stored in a column and a standalone
column to label the treatment of each value in the measurement column. The following code creates a long
table.

# Create the data wvectors
lengths <- c(

75, 67, 70, 75, 65, 71, 67, 67, 76, 68, # Control
57, 58, 59, 59, 62, 60, 60, 57, 59, 61, # Glucose
58, 61, 56, 58, 57, 56, 58, 60, 57, 58, # Fructose
58, 59, 58, 61, 57, 56, 58, 57, 57, 59, # GlucFruc
62, 66, 65, 63, 64, 62, 65, 65, 62, 67 # Sucrose

# Create the treatment factor
treatment <- rep(c("Control", "Glucose", "Fructose", "GlucFruc", "Sucrose"), each = 10)

# Combine into a data frame
pea.long <- data.frame(
Length = lengths,
Treatment = factor(treatment, levels = c("Control", "Glucose", "Fructose", "GlucFruc", "Sucrose"))

# View the first 20 rows to make sure the data structure is correct
head(pea.long, n=20)

Length Treatment

|

| 1 75  Control
| 2 67  Control
| 3 70  Control
| 4 75  Control
| 5 65  Control
| 6 71 Control
| 7 67 Control
| 8 67 Control
| 9 76  Control
| 10 68 Control
| 11 57  Glucose
| 12 58 Glucose
| 13 59  Glucose
| 14 59  Glucose
| 15 62  Glucose


https://www.youtube.com/watch?v=KJ5G2KjcXcA
https://www.youtube.com/watch?v=KJ5G2KjcXcA

16 60 Glucose

|

| 17 60  Glucose
| 18 57  Glucose
| 19 59  Glucose
| 20 61  Glucose

We next call aov() to perform ANOVA analysis.

## create an anova model object

aov.model <- aov(Length ~ Treatment, data = pea.long)
## create the classical ANOVA table

anova(aov.model)

Analysis of Variance Table

|
|
| Response: Length

| Df Sum Sq Mean Sq F value Pr(>F)

| Treatment 4 1105.7 276.430 52.642 < 2.2e-16 **x*
| Residuals 45 236.3 5.251

|

|

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

## or alternatively, you can simply use summary(aov.model) to produce the same results!
The annotated output is given by

Analysis of Variance Table

Response: Leng SSs MSs
Degrees of freedom —— Df Sum Sg¢ Mean F value Pr(>F)

Between —» Treatment 4 1105.7 276.430 52.642 |< 2.2e-16 %**

Within — Residuals 45 236.3 5.251 K\
MSe/MSw p-value

SSy MSw
Signif. coues: w -=xx’ 0,001 ¢xx’ 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ * 1

Conclusion: Since the p-value is approximately 0, the null hypothesis is rejected. That is, the various sugar
media (the independent, or explanatory, variable) significantly affect the mean pea section length.

The following YouTube video ( https://www.youtube.com/watch?v=IkR3Rzrgiv4) gives another example
of using the R function aov(). The video also uses some graphical functions to create some visualizations.

We did not discuss visualizations in this class, but we will cover more visualizations in subsequent statistics
courses.

5 Multiple Comparisons

When analyzing variance (ANOVA), a significant F-test (i.e., p-value is less than the given significance level
«) indicates that at least one group mean differs from the others. However, ANOVA does not specify which
pairs of groups are significantly different. Post-hoc tests, also known as multiple comparison tests,


https://www.youtube.com/watch?v=IkR3Rzrgiv4

are used to identify these specific differences while controlling for the increased risk of Type I errors (false
positives) that arise from performing multiple comparisons.

There are different Post-hoc tests. We only introduce two commonly used post-hoc methods using R
built-in functions:

o Tukey’s Honest Significant Difference (HSD) -Controls family-wise error rate (FWER) for all
pairwise comparisons.

e Bonferroni Correction - Adjusts p-values by multiplying them by the number of comparisons

6 Visual Comparison

We have learned different graphical summaries of data. Box-plot is a geometric representation of the 5-
number-summary of a numerical variable. Since treatment variable has multiple categories, we can create a
back-to-back box-plot to visualize the different in the distributions.

The R function boxplot () can draw multiple boxplots of a numerical variable according the categories of the
group variable. Since package {graphics} comes with the base R, installation and loading the package is
unnecessary.

boxplot(Length ~ Treatment, data = pea.long)

To R
N~
o _|
N~
e
pre}
= \ \
LO — 1
3 ©
o ' S -
© — 1
: —
\ | ] 1 ]
| | | | |
Control Fructose Sucrose
Treatment

The above box-plots clearly show that the pea lengths using sugar media Fructose, Glucose, and GlucFruc
are similar to each other.

6.1 Tukey’s Honest Significant Difference (HSD)

Tukey’s Honest Significant Difference (HSD) is a post-hoc test used after a statistically significant ANOVA to
determine which specific group means differ from each other. Unlike multiple t-tests, which inflate the Type I
error rate, Tukey’s HSD adjusts for multiple comparisons, maintaining the family-wise error rate (FWER) at
the desired level (e.g., 0.05).
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Next, we perform a multiple comparison of pea length across different sugar media using the plant physiology
data. For convenience, we use the long-format data frame defined earlier and an anova object in the following
R code.

## refit the ANOVA model

aov.model <- aov(Length ~ Treatment, data = pea.long)

## multiple comparison

tukey.comp <- TukeyHSD(aov.model)

print (tukey.comp)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Length ~ Treatment, data = pea.long)

I

|

|

|

|

| $Treatment

| diff lur upr p adj
| Glucose-Control -10.9 -13.811928 -7.988072 0.0000000
| Fructose-Control -12.2 -15.111928 -9.288072 0.0000000
| GlucFruc-Control -12.1 -15.011928 -9.188072 0.0000000
| Sucrose-Control -6.0 -8.911928 -3.088072 0.0000050
| Fructose-Glucose -1.3 -4.211928 1.611928 0.7114379
| GlucFruc-Glucose -1.2 -4.111928 1.711928 0.7676225
| Sucrose-Glucose 4.9 1.988072 7.811928 0.0001778
| GlucFruc-Fructose 0.1 -2.811928 3.011928 0.9999786
| Sucrose-Fructose 6.2 3.288072 9.111928 0.0000026
| Sucrose-GlucFruc 6.1 3.188072 9.011928 0.0000036

The results indicate that there is no significant difference in pairs Fructose-Glucose, GlucFruc-Glucose, and
GlucFruc-Fructose.

par(mai=c(1.5,2,1,1)) # Makes Toom on the plot for the group names

plot (tukey.comp, # name of the TukeyHSD() object
cex.lab = 0.6, # adjust the font size of the labels of the wertical azis
las = 1) # orientation of the labels

11



95% family—wise confidence level

Glucose—-Control - ——
Fructose—Control | ———

GlucFruc—Control | ———

Sucrose—Control — —_—
Fructose—-Glucose — ——
GlucFruc—-Glucose — —
Sucrose—Glucose — o
GlucFruc—-Fructose — —
Sucrose-Fructose — L
Sucrose-GlucFruc — R e

Differences in mean levels of Treatment

6.2 Bonferroni Comparison

The Bonferroni correction is a conservative method for adjusting significance levels when performing multiple
comparisons to reduce the risk of Type I errors (false positives). It is one of the simplest and most widely
used approaches for controlling the family-wise error rate.

The R function pairwise.t.test () performs pairwise comparison. It requires inputting individual variables
(response and treatment group). The following is code for the Bonferroni procedure.

Bonfeeroni.result <- pairwise.t.test(
x = pea.long$Length,
g = pea.long$Treatment,
p.adjust.method = "bonferroni"

)

print (Bonfeeroni.result)

Pairwise comparisons using t tests with pooled SD
data: pea.long$length and pea.long$Treatment

|
|
I
|
|
| Control Glucose Fructose GlucFruc
| Glucose 7.3e-13 - - -

| Fructose 1.7e-14 1.00000 - -

| GlucFruc 2.2e-14 1.00000 1.00000 -

| Sucrose 5.1e-06 0.00019 2.6e-06 3.7e-06
|

|

P value adjustment method: bonferroni

Using the p-value adjusted Bonferroni procedure, three pairs of treatment groups are significantly different:
Fructose-Glucose, GlucFruc-Glucose, and GlucFruc-Fructose. This result is consistent with Tukeu’s HSD

12



method.

Before conclude this section, we recommend a YouTube video (https://www.youtube.com/watch?v=hPUvqt
mCu7Q) with an example one multiple comparison among group means using R,

7 Concluding Remarks

One-Way ANOVA (Analysis of Variance) is a statistical method used to compare the means of three or
more independent groups to determine if at least one group mean is significantly different from the others. It
extends the t-test (which compares only two groups) to multiple groups.

Hypotheses
o Null Hypothesis (Hp): All group means are equal(uy = po = -+ = ug).
o Alternative Hypothesis (H,): At least one group mean is different.
The fundamental assumptions of One-Way ANOVA include:
o Independence: Observations must be independent (e.g., random sampling).

o Normality: Data in each group should be approximately normally distributed (checked via Q-Q plots
or Shapiro-Wilk test).

o Homogeneity of Variance (Homoscedasticity): Groups should have equal variances (tested using
Levene’s test or Bartlett’s test).

If any of theses assumptions are violated, the classical ANOVA results will be invalid. There some alternatives
of the classic ANOVA that will be covered in the subsequent related courses. The key information in the
ANOVA analysis is summarized in the following one-way ANOVA table.

Source df (Degrees of Freedom)  SS (Sum of Squares) MS (Mean Square) F-Statistic
: AFCR — SSB _ MSB

Between Groups k-1 SSB MSB = = F = {5

Within Groups (Error) N — k sSW MSW = 1*-__1* _

Total N=1 SST - -

If ANOVA rejects the null hypotheis, post-hoc tests identify which specific groups differ. We introduced two
prcedures for this purpose.

o Tukey’s HSD (controls family-wise error rate).

o Bonferroni Correction (conservative adjustment).
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