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1 Introduction
Experimental design is a fundamental aspect of statistical analysis, allowing researchers to systematically
investigate the effects of different treatments on a response variable. In CRD, experimental units are randomly
assigned to different treatment groups.
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In this note, we will explore how Classical Analysis of Variance (ANOVA) and Regression Analysis can be
used to analyze data from a CRD. We will also illustrate these methods using some numerical examples. For

Working Data in Plant Physiology

Our example data are from an experiment in plant physiology, published by Sokal and Rohlf (1995). The
lengths of pea sections (the dependent, or response, variable) grown in a tissue culture were recorded. The
purpose of the experiment was to test the effects of various sugar media (the independent, or explanatory,
variable) on mean pea section length. A balanced CRD was used with 10 replicates per treatment level.

The data are given in the table below:

The wide-format table is easy to use when performing manual calculations. Most of the software programs
use long-format data tables. We will reshape this wide table when using the R program for various analyses.

2 Objective and Logic of Analyzing CRD Data
Before moving to data analysis, we first discuss the objective, logic, and methods for analyzing CRD data.
The

2.1 The objective and Logic
The core goals when analyzing Completely Randomized Design (CRD) data are threefold:

• Treatment Effect Detection - Determine if different treatments produce statistically significant
differences in the response variable. For example, do fertilizers A, B, and C result in different crop
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yields?

• Effect Size Quantification - Measure the magnitude of treatment differences. For example, Fertilizer
C increases yield by 13 bushels/acre compared to Fertilizer A

• Ranking/Comparison of Treatments Identify which treatments perform best/worst. This involves
multiple comparisons among means across treatments. For example, we can order fertilizers by yield: A
> B > A through multiple comparisons.

Statistically, treatment Effect Detection in CRD with k treatments can be achieved by testing a hypothesis.

H0 : µ1 = µ2 = · · · = µk vs Ha : at least one mean differs

If H0 is rejected, we quantify the size of treatment effects and rank the treatment effects across the treatments
in the CRD. There are different approaches to testing the above hypothesis

2.2 Measuring Discrepancy between H0 and Ha

Let’s use the following balanced CRD data table and related notations.

The three different errors defined above have the following relationship.

(yij − ȳ··) = (yij − ȳi·) + (ȳi· − ȳ··)

The above expression simply means that we can decompose the overall residual (yij − ȳ··) into within
treatment error ((yij − ȳi·), also called within residual error) and between treatment error (ȳi· − ȳ··). Since an
error could be positive or negative. Similar to the definition of variance, we square all these errors to obtain
squared errors.

After some tedous algebra (i.e., not straightforward at all!), we have the following equation

t∑
i=1

ni∑
j=1

(yij − ȳ··)2 =
t∑

i=1

ni∑
j=1

(yij − ȳi·)2 +
t∑

i=1

ni∑
j=1

(ȳi· − ȳ··)2
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The last term in the above equation has no subscript j; we simplify the last term to get the following equation.

t∑
i=1

ni∑
j=1

(yij − ȳ··)2

︸ ︷︷ ︸
SST

=
t∑

i=1

ni∑
j=1

(yij − ȳi·)2

︸ ︷︷ ︸
SSW

+
t∑

i=1
ni(ȳi· − ȳ··)2

︸ ︷︷ ︸
SSB

where SST = Total Sum of Squared Residuals, SSW = Sum of Squared Errors within treatments
and SSB = Sum of Squared Errors between treatments.

Recall the definition of sample variance

s2 =
(x1 − x̄)2 + (x2 − x̄)2 + · · ·( xn − x̄)2

n − 1 =
∑n

i=1(xi − x̄)2

n − 1 ,

Which is average squared deviation (also called mean squared deviation MSD or mean squared
error, MSE)! The denominator n − 1 in the above definition reflects the degrees of freedom - meaning
that number of independent observations (n) minus one constratint (x̄ =

∑n
i=1 xi/n, each equation based on

the n independent observatiob is considered as a contraint!).

Let’s look at SSB : There are t independent means (one for each treatment) {ȳ1·, ȳ2·, ȳ3·, · · · , ȳt·}, the grand
total ȳ·· is consider a constraint. Therefore, there are $ t-1$ degrees of freedom associated with SSB . Therefore,
the mean squared error of the between errors is defined by

MSB = SSB

t − 1

Similarly, in SSW , there nT independent observations yij and t constraints {ȳ1·, ȳ2·, ȳ3·, · · · , ȳt·} (Yes! since
each of them is the mean of observations within each treatment). Therefore, the degrees of freedom
in SSW is nT − t, Therefore, the mean square error of within errors is defined by

MSW = SSW

nT − t
.

Remarks:

• MSB is the estimated sample variance of the sample means of individual treatments.

• MSW is the weighted average of the variances of each individual treatment.

Here is the logic for how to define a measure to assess the discrepancy between H0 and Ha:

If there is no real difference between treatments (i.e., H0 is true), MSB and MSW both estimate
the same underlying variance. Therefore MSB ≈ MSW !

We can construct the test statistic based on MSB and MSEB under H0. Mathematically, both MSB −MSW

(≈ 0) and MSB/MSW (≈ 1) are valid measures to assess the discepancy between H0 and Ha. Since both
quantities are random (since they are evaluated based on the random sample), we need to choose the one
with a known probability distribution. The ratio expression MSB/MSW has a well-known distribution -
F distribution!
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2.3 Basics of F Distribution
We have discussed several distributions to characterize test statistics for the z-test, t-test, and chi-square test.
One of the essential tools in hypothesis testing involving the comparison of variances (the case we introduced
above) is the F-distribution. This subsection outlines the basics of the F-distribution and demonstrates how
to use R to compute critical values and p-values associated with F-tests.

The F-distribution is a continuous probability distribution used for the comparison of two sample variances
(such as SSB and SSW ) and regression analysis (will discuss this later). Using the above quantities, we have

F = SSW /(nT − t)
SSB/(t − 1) → FnT −t, t−1

nT − t is the degrees of freedom of the numerator and t − 1 is the degrees of the denominator. We can
also flip the ratio to get another valid test statistic

F ′ = SSB/(t − 1)
SSW /(nT − t) → F t−1,nT −t

Caution: the degrees of freedom in the subscript MUST be adjusted so that the first index is the degrees of
freedom of the numerator and the second subscript represents the degrees of freedom of the denominator.
This means F7,5 and F5,7 are two different F distributions!

FdfN ,dfD
is skewed to the right. The following figure shows the density curve of an F-distribution with degrees

of freedom df1 = 7 (numerator) and df2 = 10 (denominator), together with the R commands to find the
critical and p-values.

The syntax of the two R functions used to find the p-value and critical value is annotated in the following
figure.
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Most introductory statistics textbooks include an F table based on a few commonly used significance levels α.
For example, the critical value of F7,10 at α = 0.05 labeled in the left panel of the density curve of F7,10 can
also be found from the following F table

The F tables are constructed based on a few significance levels. It is not to use use F table to find p-values.

Next, we open a standalone section to formally introduce the one-way ANOVA for CRD data.

3 One-Way ANOVA and Implementation
We have discussed the logic and valid measures for assessing the discrepancy between H0 and Ha. Next, we
summarize the above results in a classical one-way ANOVA table and test the following null hypothesis based
on the CRD.

H0 : µ1 = µ2 = · · · = µt vs Ha : at least one mean differs

The test statistic and corresponding p-value are summarized in the following ANOVA table.

Source DF SS MS F-Value P-Value
Between t − 1 SSB MSB =

SSB/(t − 1)
MSW /MSB

Within nT − t SSW MSW =
SSW /(nT − t)

Total nT − ‘ SST

Decision Rule: If the p-value in the above table is less than the significance level α, we reject the null
hypothesis; otherwise, we conclude the null hypothesis.

Next, we use the plant physiology data to demonstrate to to construct the above ANOVA table and use R
as a calculator to find SS and MS and related quantities in the ANOVA table. The following code loads the
data into R in the same format (i.e., wide table format)
# Create the data vectors
Control <- c(75, 67, 70, 75, 65, 71, 67, 67, 76, 68) # Control
Glucose <- c(57, 58, 59, 59, 62, 60, 60, 57, 59, 61) # Glucose
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Fructose <- c(58, 61, 56, 58, 57, 56, 58, 60, 57, 58) # Fructose
GlucFruc <- c(58, 59, 58, 61, 57, 56, 58, 57, 57, 59) # GlucFruc
Sucrose <- c(62, 66, 65, 63, 64, 62, 65, 65, 62, 67) # Sucrose
## using cbind() to display the data
cbind(Control, Glucose, Fructose, GlucFruc, Sucrose)

| Control Glucose Fructose GlucFruc Sucrose
| [1,] 75 57 58 58 62
| [2,] 67 58 61 59 66
| [3,] 70 59 56 58 65
| [4,] 75 59 58 61 63
| [5,] 65 62 57 57 64
| [6,] 71 60 56 56 62
| [7,] 67 60 58 58 65
| [8,] 67 57 60 57 65
| [9,] 76 59 57 57 62
| [10,] 68 61 58 59 67
#colnames(wide.table) <- c("Control", "Glucose", "Fructose", "GlucFruc", "Sucrose")

The next code chunk calculates different quantities in the ANOVA table. I will make comments in the
code to show detailed steps. The primary R commands are sum(), mean(), and related R functions of the
F-distribution.
## degrees of freedom
t = 5
n.T = 10*5
dfN = t - 1
dfD = n.T - t
ybar.. = mean(c(Control, Glucose, Fructose, GlucFruc, Sucrose))
## Sum of squares
SS.B = 10*sum(c((mean(Control)-ybar..)ˆ2, (mean(Glucose)-ybar..)ˆ2, (mean(Fructose)-ybar..)ˆ2, (mean(GlucFruc)-ybar..)ˆ2, (mean(Sucrose)-ybar..)))
SS.W = sum(c(sum((Control-mean(Control))ˆ2), sum((Glucose-mean(Glucose))ˆ2), sum((Fructose-mean(Fructose))ˆ2), sum((GlucFruc-mean(GlucFruc))ˆ2), sum((Sucrose-mean(Sucrose))ˆ2)))
SS.T = sum((c(Control, Glucose, Fructose, GlucFruc, Sucrose) - ybar..)ˆ2)
## MS
MS.B = SS.B/dfN
MS.W = SS.W/dfD
## F value
F.value = MS.B/MS.W
p.val = pf(F.value, dfN, dfD, lower.tail = FALSE)
anova.out <- data.frame(

DF = c(dfN, dfD),
SS = c(SS.B, SS.W),
MS = c(MS.B, MS.W),
F.value = c(F.value, NA),
p.value = c(p.val, NA)

)
rownames(anova.out)=c("Between", "Within")
print(anova.out, na.print = "")

| DF SS MS F.value p.value
| Between 4 1077.944 269.486000 51.31981 3.324636e-16
| Within 45 236.300 5.251111 NA NA

Conclusion: The p-value is approximately 0. We reject the null hypothesis that all means are equal. In
other words, the mean pea section length is affected by various sugar media.
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The second part of the following YouTube video (after 15 Minutes, https://www.youtube.com/watch?v=KJ
5G2KjcXcA) discussed in the next note on One-way ANOVA.

4 ANOVA with R Function aov()

We still use plant physiology data to illustrate one-way ANOVA analysis using aov(). Since aov() requires
a long table structure. That is, all measurements of the response must be stored in a column and a standalone
column to label the treatment of each value in the measurement column. The following code creates a long
table.
# Create the data vectors
lengths <- c(

75, 67, 70, 75, 65, 71, 67, 67, 76, 68, # Control
57, 58, 59, 59, 62, 60, 60, 57, 59, 61, # Glucose
58, 61, 56, 58, 57, 56, 58, 60, 57, 58, # Fructose
58, 59, 58, 61, 57, 56, 58, 57, 57, 59, # GlucFruc
62, 66, 65, 63, 64, 62, 65, 65, 62, 67 # Sucrose

)

# Create the treatment factor
treatment <- rep(c("Control", "Glucose", "Fructose", "GlucFruc", "Sucrose"), each = 10)

# Combine into a data frame
pea.long <- data.frame(

Length = lengths,
Treatment = factor(treatment, levels = c("Control", "Glucose", "Fructose", "GlucFruc", "Sucrose"))

)

# View the first 20 rows to make sure the data structure is correct
head(pea.long, n=20)

| Length Treatment
| 1 75 Control
| 2 67 Control
| 3 70 Control
| 4 75 Control
| 5 65 Control
| 6 71 Control
| 7 67 Control
| 8 67 Control
| 9 76 Control
| 10 68 Control
| 11 57 Glucose
| 12 58 Glucose
| 13 59 Glucose
| 14 59 Glucose
| 15 62 Glucose
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| 16 60 Glucose
| 17 60 Glucose
| 18 57 Glucose
| 19 59 Glucose
| 20 61 Glucose

We next call aov() to perform ANOVA analysis.
## create an anova model object
aov.model <- aov(Length ~ Treatment, data = pea.long)
## create the classical ANOVA table
anova(aov.model)

| Analysis of Variance Table
|
| Response: Length
| Df Sum Sq Mean Sq F value Pr(>F)
| Treatment 4 1105.7 276.430 52.642 < 2.2e-16 ***
| Residuals 45 236.3 5.251
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## or alternatively, you can simply use summary(aov.model) to produce the same results!

The annotated output is given by

Conclusion: Since the p-value is approximately 0, the null hypothesis is rejected. That is, the various sugar
media (the independent, or explanatory, variable) significantly affect the mean pea section length.

The following YouTube video ( https://www.youtube.com/watch?v=IkR3Rzrgiv4) gives another example
of using the R function aov(). The video also uses some graphical functions to create some visualizations.
We did not discuss visualizations in this class, but we will cover more visualizations in subsequent statistics
courses.

5 Multiple Comparisons
When analyzing variance (ANOVA), a significant F-test (i.e., p-value is less than the given significance level
α) indicates that at least one group mean differs from the others. However, ANOVA does not specify which
pairs of groups are significantly different. Post-hoc tests, also known as multiple comparison tests,
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are used to identify these specific differences while controlling for the increased risk of Type I errors (false
positives) that arise from performing multiple comparisons.

There are different Post-hoc tests. We only introduce two commonly used post-hoc methods using R
built-in functions:

• Tukey’s Honest Significant Difference (HSD) -Controls family-wise error rate (FWER) for all
pairwise comparisons.

• Bonferroni Correction - Adjusts p-values by multiplying them by the number of comparisons

6 Visual Comparison
We have learned different graphical summaries of data. Box-plot is a geometric representation of the 5-
number-summary of a numerical variable. Since treatment variable has multiple categories, we can create a
back-to-back box-plot to visualize the different in the distributions.

The R function boxplot() can draw multiple boxplots of a numerical variable according the categories of the
group variable. Since package {graphics} comes with the base R, installation and loading the package is
unnecessary.
boxplot(Length ~ Treatment, data = pea.long)

Control Fructose Sucrose

60
65

70
75

Treatment

Le
ng

th

The above box-plots clearly show that the pea lengths using sugar media Fructose, Glucose, and GlucFruc
are similar to each other.

6.1 Tukey’s Honest Significant Difference (HSD)
Tukey’s Honest Significant Difference (HSD) is a post-hoc test used after a statistically significant ANOVA to
determine which specific group means differ from each other. Unlike multiple t-tests, which inflate the Type I
error rate, Tukey’s HSD adjusts for multiple comparisons, maintaining the family-wise error rate (FWER) at
the desired level (e.g., 0.05).
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Next, we perform a multiple comparison of pea length across different sugar media using the plant physiology
data. For convenience, we use the long-format data frame defined earlier and an anova object in the following
R code.
## refit the ANOVA model
aov.model <- aov(Length ~ Treatment, data = pea.long)
## multiple comparison
tukey.comp <- TukeyHSD(aov.model)
print(tukey.comp)

| Tukey multiple comparisons of means
| 95% family-wise confidence level
|
| Fit: aov(formula = Length ~ Treatment, data = pea.long)
|
| $Treatment
| diff lwr upr p adj
| Glucose-Control -10.9 -13.811928 -7.988072 0.0000000
| Fructose-Control -12.2 -15.111928 -9.288072 0.0000000
| GlucFruc-Control -12.1 -15.011928 -9.188072 0.0000000
| Sucrose-Control -6.0 -8.911928 -3.088072 0.0000050
| Fructose-Glucose -1.3 -4.211928 1.611928 0.7114379
| GlucFruc-Glucose -1.2 -4.111928 1.711928 0.7676225
| Sucrose-Glucose 4.9 1.988072 7.811928 0.0001778
| GlucFruc-Fructose 0.1 -2.811928 3.011928 0.9999786
| Sucrose-Fructose 6.2 3.288072 9.111928 0.0000026
| Sucrose-GlucFruc 6.1 3.188072 9.011928 0.0000036

The results indicate that there is no significant difference in pairs Fructose-Glucose, GlucFruc-Glucose, and
GlucFruc-Fructose.
par(mai=c(1.5,2,1,1)) # Makes room on the plot for the group names
plot(tukey.comp, # name of the TukeyHSD() object

cex.lab = 0.6, # adjust the font size of the labels of the vertical axis
las = 1) # orientation of the labels
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Sucrose−Control
GlucFruc−Control
Fructose−Control
Glucose−Control

95% family−wise confidence level

Differences in mean levels of Treatment

6.2 Bonferroni Comparison
The Bonferroni correction is a conservative method for adjusting significance levels when performing multiple
comparisons to reduce the risk of Type I errors (false positives). It is one of the simplest and most widely
used approaches for controlling the family-wise error rate.

The R function pairwise.t.test() performs pairwise comparison. It requires inputting individual variables
(response and treatment group). The following is code for the Bonferroni procedure.
Bonfeeroni.result <- pairwise.t.test(

x = pea.long$Length,
g = pea.long$Treatment,
p.adjust.method = "bonferroni"

)
print(Bonfeeroni.result)

|
| Pairwise comparisons using t tests with pooled SD
|
| data: pea.long$Length and pea.long$Treatment
|
| Control Glucose Fructose GlucFruc
| Glucose 7.3e-13 - - -
| Fructose 1.7e-14 1.00000 - -
| GlucFruc 2.2e-14 1.00000 1.00000 -
| Sucrose 5.1e-06 0.00019 2.6e-06 3.7e-06
|
| P value adjustment method: bonferroni

Using the p-value adjusted Bonferroni procedure, three pairs of treatment groups are significantly different:
Fructose-Glucose, GlucFruc-Glucose, and GlucFruc-Fructose. This result is consistent with Tukeu’s HSD
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method.

Before conclude this section, we recommend a YouTube video (https://www.youtube.com/watch?v=hPUvqt
mCu7Q) with an example one multiple comparison among group means using R,

7 Concluding Remarks
One-Way ANOVA (Analysis of Variance) is a statistical method used to compare the means of three or
more independent groups to determine if at least one group mean is significantly different from the others. It
extends the t-test (which compares only two groups) to multiple groups.

Hypotheses

• Null Hypothesis (H0): All group means are equal(µ1 = µ2 = · · · = µk).

• Alternative Hypothesis (Ha): At least one group mean is different.

The fundamental assumptions of One-Way ANOVA include:

• Independence: Observations must be independent (e.g., random sampling).

• Normality: Data in each group should be approximately normally distributed (checked via Q-Q plots
or Shapiro-Wilk test).

• Homogeneity of Variance (Homoscedasticity): Groups should have equal variances (tested using
Levene’s test or Bartlett’s test).

If any of theses assumptions are violated, the classical ANOVA results will be invalid. There some alternatives
of the classic ANOVA that will be covered in the subsequent related courses. The key information in the
ANOVA analysis is summarized in the following one-way ANOVA table.

If ANOVA rejects the null hypotheis, post-hoc tests identify which specific groups differ. We introduced two
prcedures for this purpose.

• Tukey’s HSD (controls family-wise error rate).

• Bonferroni Correction (conservative adjustment).
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