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1 Introduction
Two-sample tests are statistical methods used to compare two groups (samples) to determine whether they
come from the same population or have different characteristics. As you have learned in one-sample tests,
two-sample tests can be broadly classified into:

Parametric Tests: Assume data follows a specific distribution (usually normal) and compare parameters
like means or variances.

Nonparametric Tests: Make fewer assumptions about the data distribution and are used when parametric
assumptions are violated.

This module reviews parametric two-sample tests first and then discusses non-parametric two-sample tests.
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2 (Raw) Data Structure
For convenience, we include the section on data structures from the previous module. All procedures
introduced in this module will use the raw data table with the following layout:

Y X1 X2 · · · Xk

y1 x11 x21 · · · xk1
y2 x12 x22 · · · xk2
y3 x13 x23 · · · xk3
...

...
...

...
...

yn x1n x2n · · · xkn

For example, an employer wants to see whether their pay rate is fair in terms of gender (i.e., assessing
potential gaps in pay rate between male and female employees in the same role under similar conditions).
The HR helped to create a dataset in the following form.

salary (Y ) gender (X1) role (X2) Yr_edu (X3) Yr_exp (X4)
$56,230 F analyst 12 4
$73,450 M manager 16 8
$47,520 M analyst 14 3
$111,190 F manager 18 12
$66,800 F analyst 14 7
$63,170 M analyst 16 6
$77,430 M analyst 16 9
$99,280 F analyst 18 13

We also introduced R data frames earlier to store a dataset in R and then use it for analysis. The next R
code defines a dataframe in R based on the above toy dataset.
my.toy.data <- data.frame(salary = c(56230, 73450, 47520, 111190, 66800, 63170, 77430, 99280), # numerical values

gender = c("F", "M", "M", "F", "F", "M", "M", "F"), # character (categorical) values
role = c("analyst", "manager", "analyst", "manager", "analyst", "analyst", "analyst", "analyst"),
Yr.edu = c(12, 16, 14, 18, 14, 16, 16, 18),
Yr.exp = c(4,8,3,12,7,6,9,13)
)

my.toy.data # print the data

| salary gender role Yr.edu Yr.exp
| 1 56230 F analyst 12 4
| 2 73450 M manager 16 8
| 3 47520 M analyst 14 3
| 4 111190 F manager 18 12
| 5 66800 F analyst 14 7
| 6 63170 M analyst 16 6
| 7 77430 M analyst 16 9
| 8 99280 F analyst 18 13

Since we will work with more than one variable starting from this module, we introduce a few
commands you can use to select rows, columns, or individual cell values in a data frame. The
following figure shows the basics on how to access an R data frame.
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The following are a few examples

1. Explicit Access
# Select a single cell located at the intersection of row 2 and column 3
my.toy.data[2,3]

| [1] "manager"
# multiple cells involve multiple rows and columns. In this case, indices must be
# provided in the form of vector, e.g., c(2,5,6)
my.toy.data[c(3,6), c(1,3)]

| salary role
| 3 47520 analyst
| 6 63170 analyst
# select one column and ALL rows
my.toy.data[ , 4]

| [1] 12 16 14 18 14 16 16 18
# select multiple columns and ALL rows
my.toy.data[ , c(1,5)]

| salary Yr.exp
| 1 56230 4
| 2 73450 8
| 3 47520 3
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| 4 111190 12
| 5 66800 7
| 6 63170 6
| 7 77430 9
| 8 99280 13
# select multiple columns and ALL rows using variable names
my.toy.data[ , c("salary", "gender", "role")] # vector with character values in quotes!

| salary gender role
| 1 56230 F analyst
| 2 73450 M manager
| 3 47520 M analyst
| 4 111190 F manager
| 5 66800 F analyst
| 6 63170 M analyst
| 7 77430 M analyst
| 8 99280 F analyst
# select one row (also called one record) and ALL columns
my.toy.data[4 , ]

| salary gender role Yr.edu Yr.exp
| 4 111190 F manager 18 12
# select multiple rows and ALL columns
my.toy.data[c(1,5) , ]

| salary gender role Yr.edu Yr.exp
| 1 56230 F analyst 12 4
| 5 66800 F analyst 14 7

2. Conditional Access

In application, sometimes we need to select a subset of the data under certain conditions defined based on
variables. For example, if we want to compare the mean salary between male and female employees in a
company, we need to calculate the sample size, mean, and standard deviation, respectively, from the male
and female groups in introductory statistics classes.

There are different R commands to achieve this goal. We use which() to identify salaries for male and female
employees, respectively. The following code shows how to separate the salaries of the two groups.
# use my.toy.data$gender to identify male group
male.id <- which(my.toy.data$gender == "M") # CAUTION: double equal sign (==) MUST be used in conditional testing!!!

# This will return the row indexes of male employees
# Use the above returned row index to extract the two groups
male.salary <- my.toy.data[male.id, ] # male group
female.salary <- my.toy.data[ - male.id, ] # "- male.id": not male => female indexes

Print out the above subset.
##
male.salary

| salary gender role Yr.edu Yr.exp
| 2 73450 M manager 16 8
| 3 47520 M analyst 14 3
| 6 63170 M analyst 16 6
| 7 77430 M analyst 16 9
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##
female.salary

| salary gender role Yr.edu Yr.exp
| 1 56230 F analyst 12 4
| 4 111190 F manager 18 12
| 5 66800 F analyst 14 7
| 8 99280 F analyst 18 13

3 Two-Sample t-Test Revisited
Recall that, in introductory statistics (MAT121/125), the assumptions of the two t-test are

• Both populations are normally distributed
• Both population variances are unknown but equal

Under the above assumptions, the two random samples were taken from the two independent populations,
respectively, with the following statistics.

Type of Statistics sample 1 sample 2
sample size n1 n2
sample mean x̄1 x̄2
sample standard deviation s1 s2

Under the second assumption, we need to estimate the common standard deviation by pooling two
samples using the following formula.

spool =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

The test statistic for testing H0 : µ1 − µ2 = 0 vs Ha : µ1 − µ2 ̸= 0 is

TS = (x̄1 − x̄2) − 0
spool

√
1/n1 + 1/n2

→ tn1+n2−2

Remark: If the equal variances assumption is not met, one can use an approximate t-test using the
Welch-Satterthwaite procedure. This approximation will not be discussed in this note. We will address this
in the subsequent notes under more general settings.

Example: We will use the Pima Indian Diabetes data to illustrate the above two sample tests to see whether
the mean BMI levels differ between diabetes and diabetes-free populations. We need to load the data first
before calculating the related statistics required for the test. Note that diabetes status is reflected in the
variable diabetes.
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H0 : µ1 − µ2 = 0 vs Ha : µ1 − µ2 ̸= 0

Since R is sensitive, we may want to use the R command head() to check the exact names and first 6
observations in the data frame

# read data into R
PimaIndiaDiabetes <- read.csv("https://pengdsci.github.io/STA200/dataset/PimaIndiaDiabetes.csv")
## checking variable names
head(PimaIndiaDiabetes)

| X pregnant glucose pressure triceps insulin mass pedigree age diabetes
| 1 4 1 89 66 23 94 28.1 0.167 21 neg
| 2 5 0 137 40 35 168 43.1 2.288 33 pos
| 3 7 3 78 50 32 88 31.0 0.248 26 pos
| 4 9 2 197 70 45 543 30.5 0.158 53 pos
| 5 14 1 189 60 23 846 30.1 0.398 59 pos
| 6 15 5 166 72 19 175 25.8 0.587 51 pos

3.1 Manual Calculation Using R
Next, we show step-by-step manual calculation and translate the above formulas directly into R code and
report the test statistic, degrees of freedom, and the p-value for statistical decision. To this end, we define a
subset with only two variables: BMI (mass) and diabetes.
sub.diabetes <- PimaIndiaDiabetes[ , c("mass", "diabetes")] # values in the vector must be COMMA separated!
diabetes.id <- which(sub.diabetes$diabetes == "pos")
diabetes.pop <- sub.diabetes[diabetes.id, ]
no.diabetes.pop <- sub.diabetes[-diabetes.id, ]
##
## statistics for pop #1
n1 <- length(diabetes.pop$mass)
xbar.1 <- mean(diabetes.pop$mass)
s.1 <- sd(diabetes.pop$mass)
## statistics for pop #2
n2 <- length(no.diabetes.pop$mass)
xbar.2 <- mean(no.diabetes.pop$mass)
s.2 <- sd(no.diabetes.pop$mass)
## pooled standard deviation
s.pool <- sqrt(((n1-1)*s.1ˆ2 + (n2-1)*s.2ˆ2)/(n1+n2-2))
## evaluate test statistic
TS <- ((xbar.1-xbar.2)-0)/(s.pool*sqrt(1/n1 + 1/n2))
## absolute value of TS
abs.TS <- abs(TS)
##p-value: 2 times the right-tail area for a two-sample test
p.value <- 2*pt(abs.TS, df = n1+n2-2, lower.tail = FALSE) # lower.tail = FALSE specifies the right tail area
## print out statistic, df, and p-value in a combined vector
cbind(TS = TS, df = n1 +n2 - 2, p.value = p.value)

| TS df p.value
| [1,] 5.540362 390 5.563221e-08
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There is clear strong evidence that the mean body mass indices (BMI) in diabetes and diabetes-free
populations are different (p = 5.563221e-08 < 0.05). This is consistent with clinical findings.

3.2 Calling R Built-in Function
We have used t.test() in a previous note for a one-sample t test. The same function can be used to perform
a 2-sample t test. We need to provide the independent sample vectors directly to the function to produce the
results.
# We use the two samples of BMI found previously:
t.test(diabetes.pop$mass, no.diabetes.pop$mass, alternative = "two.sided", var.equal = TRUE)

|
| Two Sample t-test
|
| data: diabetes.pop$mass and no.diabetes.pop$mass
| t = 5.5404, df = 390, p-value = 5.563e-08
| alternative hypothesis: true difference in means is not equal to 0
| 95 percent confidence interval:
| 2.597924 5.455934
| sample estimates:
| mean of x mean of y
| 35.77769 31.75076

The above output indicates that the built-in function produces the same results.

As an exercise, you can explore whether the mean of glucose levels in diabetes and diabetes-free
populations are equal.

4 Regression Approach to Two-sample t Test
The regression approach to the two-sample t-test is straightforward. Special attention should be paid to the
model formula in that the group variable must be on the right-hand side and MUST be a factor. R function
factor() turns a variable into a factor variable. In other words, the model formula should be in the form
lm(y ~ factor(x), data = dataset.name)

The following three lines of code produce the results in the above two-sample test using the regression method.
# read data into R
PimaIndiaDiabetes <- read.csv("https://pengdsci.github.io/STA200/dataset/PimaIndiaDiabetes.csv")
reg.2.sample.test <- lm(mass ~ factor(diabetes), data = PimaIndiaDiabetes)
summary(reg.2.sample.test)

|
| Call:
| lm(formula = mass ~ factor(diabetes), data = PimaIndiaDiabetes)
|
| Residuals:
| Min 1Q Median 3Q Max
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| -13.5508 -4.9460 -0.8142 3.8242 31.3223
|
| Coefficients:
| Estimate Std. Error t value Pr(>|t|)
| (Intercept) 31.7508 0.4186 75.86 < 2e-16 ***
| factor(diabetes)pos 4.0269 0.7268 5.54 5.56e-08 ***
| ---
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|
| Residual standard error: 6.775 on 390 degrees of freedom
| Multiple R-squared: 0.07296, Adjusted R-squared: 0.07059
| F-statistic: 30.7 on 1 and 390 DF, p-value: 5.563e-08

The following annotated output shows that the results are identical to those obtained in the previous section.

5 Non-parametric Two-sample Test
We have discussed the comparison of two normal population means under the assumption that the two
populations have equal variances, using the two-sample t-test. However, if either of the two assumptions—
normality and equal variances—is not satisfied, the two-sample t-test may not be appropriate.

In statistics, there are alternative procedures for comparing numeric characteristics between populations
without assuming normality or equal variances. This section introduces one such test: the Wilcoxon Rank
Sum Test (also called the Mann-Whitney U test), which assesses whether the two population
distributions are equal.

This is a much stronger test because the assumption of equal means does not require the two populations to
have identical distributions (see the following figure).
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The Wilcoxon Rank Sum Test assesses whether two sampled groups are likely to derive from the same
population. A common misconception is that it compares medians, but this is only true if the distributions
are symmetric and differ only in location. In other words, if the distributions have different shapes
(e.g., skewness or variance differences), the test may still reject (H0) even if medians are equal (see the above
figure).

The hypotheses in a two-tailed Wilcoxon Rank Sum Test are:

• The null hypothesis (H0) is that the two population distributions are equal.

• The alternative hypothesis (H1) is that the two population distributions are not equal.

Remark: one-tailed Wilcoxon Rank Sum Tests compare stochastic dominance between the two distributions.
This is out of the scope of this class. We will not discuss this topic in this class.

5.1 Manual Implementation
Next, we discuss the development of the Wilcoxon Rank Sum test. To help you understand the steps, we
use the following toy data set.
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Step 1: Ranking the Data

• Combine the data from both groups into a single dataset and sort them in ascending order: 10, 12,
14, 15, 16, 18, 20, 22

• Assign ranks to all observations from smallest to largest (tied values receive the average rank): 1,
2, 3, 4, 5, 6, 7, 8.

Step 2: Ranking the Data

• Sum the ranks for each group separately.
– $R_1 = $ Sum of ranks for Group 1: RA = 1 + 2 + 3 + 5 = 11
– $R_2 = $ Sum of ranks for Group 2: RB = 4 + 6 + 7 + 8 = 25

Step 3 Compute the Test Statistic (U)

• The test statistic U can be calculated for either group (n1 and n2 are group sizes):

U1 = n1n2 + n1(n1 + 1)
2 − R1

U2 = n1n2 + n2(n2 + 1)
2 − R2

The test statistic (commonly denoted by U) is defined to be

U = min{U1, U2},

That is, U is equal to the smaller of U1 and U2.

In the above toy example,

UA = 4 × 4 + 4(4 + 1)
2 − 11 = 15

UA = 4 × 4 + 4(4 + 1)
2 − 25 = 1

U = min{15, 1} = 1.

Step 4 Statistical Decision

To make a statistical decision, we need to find the critical value or the p-value. The key question is: What is
the distribution of the test statistic? Similar to the sign test, there is an exact distribution and an approximate
distribution.

Exact Distribution

The exact probability distribution is symmetric and can be computed using recursive methods or lookup
tables for small n1, n2 (typically n1, n2 ≤ 20). The following table given critical values for (n1 ≤ 20 and
n2 ≤ 20) based on the significant level of 0.05.
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The Decision Rule based on the critical value from the above table:

• Reject H0 if U < CVα or U > n1n2 − CVα

• Fail to reject H0 if CVα < U < n1n2 − CVα

From the above table, for n1 = n2 = 4 and α = 0.05 (one-tailed), the critical value from the Wilcoxon Rank
Sum test is 0. Recall that U = 1. We see that 0 = CV0.05 < U < 16, we fail to reject the null hypothesis H0.
That is, the two distributions are not significantly different.

Normal Approximation

If n1 > 20 and n2 > 20,

Z = U − µU

σU
→ N(0, 1),

where

µU = n1n2

2 and σU =
√

n1n2(n1 + n2 + 1)
12 .

We can either normal table or software to find the critical value and p-value.

The following short video (https://pengdsci.github.io/STA200/week03/Nonparametrics-WilcoxonTest.mp4)
explains the Wilcoxon Rank Sum test with manually worked examples. Table 9 in Appendix B in the
video refers to the U-table with significance level of α = 0.05.
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5.2 Implementation Using R
The R function wilcox.test() in the base package {stats} implements the rank sum test. The key
arguments are

• Define two vectors to store the group values.
• alternative = "two.sided"(default, tests for any difference).
• exact = TRUE (for small samples, computes exact p-value). If FALSE, uses normal approximation

(recommended for large samples).
• paired = FALSE (default, ensures it’s an independent-samples test).

# Define vectors to store values from Group A and Group B, respectively
group.A <- c(10, 12, 14, 16)
group.B <- c(15, 18, 20, 22)
# Perform Wilcoxon Rank Sum Test (Mann-Whitney U)
result <- wilcox.test(group.A, group.B, alternative = "two.sided", exact = TRUE)
result

|
| Wilcoxon rank sum exact test
|
| data: group.A and group.B
| W = 1, p-value = 0.05714
| alternative hypothesis: true location shift is not equal to 0

The above results show that the test statistic W = 1 and p-value = 0.0574. At the significance level of 0.05,
the null hypothesis was not rejected. This is consistent with the result obtained previously based on the
critical value method.

5.3 Case study - Pima Indian Diabetes
To conclude this section, we implement the Wilcoxon Rank Sum test to assess whether the distribution
of BMIs is the same between diabetes and diabetes-free populations. We will reload the data and define
vectors to store BMI for the two populations. Since both sample sizes are larger than 20, we will use the
approximation approach for the p-value.
# read data into R
PimaIndiaDiabetes <- read.csv("https://pengdsci.github.io/STA200/dataset/PimaIndiaDiabetes.csv")
# define BMI for diabetes and diabetes-free population
sub.diabetes <- PimaIndiaDiabetes[ , c("mass", "diabetes")] # values in the vector must be COMMA separated!
diabetes.id <- which(sub.diabetes$diabetes == "pos")
diabetes.pop <- sub.diabetes[diabetes.id, ]
no.diabetes.pop <- sub.diabetes[-diabetes.id, ]
##
diabetes.BMI <- diabetes.pop$mass
no.diabetes.BMI <- no.diabetes.pop$mass
## Wilcoxon test
wilcox.test(diabetes.BMI, no.diabetes.BMI, alternative = "two.sided", exact = FALSE)

|
| Wilcoxon rank sum test with continuity correction
|
| data: diabetes.BMI and no.diabetes.BMI
| W = 22608, p-value = 1.287e-07
| alternative hypothesis: true location shift is not equal to 0

The above test result shows that the null hypothesis is rejected (p ≈ 0). This means the distributions of
BMIs in the two groups are different.
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The above overlaid density curves also showed the difference between the two distributions.

6 Two-Paired-Sample Tests
The two-sample tests discussed in the previous section are based on two independent samples drawn from
two independent populations. For example, we may take two sets of new CS graduates (subjects) from two
different universities and compare their starting salaries (measurements). In practical applications, however,
there are situations in which only one set of subjects is drawn from a single population, but measurements
are taken twice from each subject at two different time points. The two sets of sample measurements in this
case are called paired samples. For example, a clinical trial investigates whether a new blood pressure (BP)
medication reduces systolic BP in hypertensive patients.

• Measurements: Systolic BP (mmHg) recorded before and after 4 weeks of treatment.
• Sample Size: 10 patients (small sample implies normality check crucial).
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Because each pair of measurements is taken from the same patient and therefore correlated (i.e., dependent),
we cannot use the two-sample tests introduced in previous sections to assess the treatment effect. It is
reasonable to take the difference between each pair of measurements so that each subject has a single resulting
value. This transforms the two-correlated-sample problem into a one-sample situation.

6.1 Paired Sample t Test
We have covered this topic in MAT121/125. The basic assumptions are

• The differences are normally distributed
• The standard deviation of the population of differences is unknown.

We will not repeat the details of the one-sample t test. Next, we use the R function t.test() to assess the
treatment effect based on the above data table.
before <- c(150, 160, 145, 155, 140, 165, 152, 158, 148, 162)
after <- c(140, 155, 142, 150, 138, 160, 148, 152, 145, 156)
differences <- after - before
##
t.test(differences)

|
| One Sample t-test
|
| data: differences
| t = -6.9374, df = 9, p-value = 6.779e-05
| alternative hypothesis: true mean is not equal to 0
| 95 percent confidence interval:
| -6.497808 -3.302192
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| sample estimates:
| mean of x
| -4.9

That the p-value is approximately equal to 0 implies a significant treatment effect.

6.2 Wilcoxon Signed Rank Test
The Wilcoxon Signed-Rank Test is a nonparametric alternative to the paired t-test, used when comparing
two related (paired) samples where data is not normally distributed. It assesses whether the median
difference between pairs is zero.

The following Illustrative Example Data will be used to explain the procedure of the Wilcoxon Signed
Rank Test

A study investigates whether a new pain relief medication reduces pain scores (on a 0-10 scale) in patients
with chronic back pain. Pain scores are measured before and after 1 week of treatment.

Steps for Wilcoxon Signed Rank Test

• Exclude zero differences (Patient 2 is removed, remaining n=9).
• Rank absolute differences (ignoring sign):

– Differences: -2, -1, -4, -1, +1, -3, +1, -2, -1
– Absolute: 2, 1, 4, 1, 1, 3, 1, 2, 1
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– Sorted: 1, 1, 1, 1, 1, 2, 2, 3, 4
– Ranks: 1s → avg rank = 3, 2s → 6.5, 3 → 8, 4 → 9.

• Sum ranks for positive and negative differences:
– Positive differences (+1, +1): Ranks = 3, 3 → Sum = 6.
– Negative differences: Sum = 3 + 6.5 + 6.5 + 8 + 9 + 3 = 36.

• Test statistic (W) = smaller sum = 6.
• Compare to critical value (from the following Wilcoxon crtical value table) at α = 0.05 for n = 9

which is 5.

Since the TS = 6 > 5 = CV0.05, the null hypothesis is rejected. That means the treatment is effective. Next,
we use R functionwilcox.test()‘ to perform the signed rank test:
# Pain scores (0-10 scale)
before <- c(7, 6, 8, 9, 5, 7, 6, 8, 4, 7)
after <- c(5, 6, 7, 5, 4, 8, 3, 9, 2, 6)

# Compute differences (After - Before)
differences <- after - before

# Perform the test (paired=TRUE)
wilcox.test(before, after, paired = TRUE, exact = FALSE, correct = FALSE)
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|
| Wilcoxon signed rank test
|
| data: before and after
| V = 39, p-value = 0.04639
| alternative hypothesis: true location shift is not equal to 0

The p-value (0.046) is less than 0.05, which means we reject the null hypothesis. Both the p-value and critical
value methods lead to the same conclusion.
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